1. Consider the symplectomorphism ϕ of $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ given by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (a Dehn twist).

(a) Identify the set of fixed points of ϕ.

(b) Exhibit a Hamiltonian isotopic map with only two fixed points.

(c) Exhibit a symplecically isotopic map with no fixed points.

(d) Show that every diffeomorphism smoothly isotopic to the map given by $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ has at least one fixed point.

2. Let $L \subset (M^4, \omega)$ be a (framed) Lagrangian two-sphere in a symplectic 4-manifold. Let τ_L denote the Dehn twist about L. Show that $(\tau_L)^2$ is smoothly isotopic to the identity.

3. Consider $M^n_k = \{z_0, \ldots, z_n) \in \mathbb{C}^{n+1} \mid z_0^2 + \ldots + z_{n-1}^2 + z_n^k = 1\}$, a 2n-dimensional symplectic (in fact Kähler) submanifold of \mathbb{C}^{n+1}. Consider the symplectic Lefschetz fibration $\pi: M^n_k \to \mathbb{C}$ given by $(z_0, \ldots, z_n) \to z_n$.

Remark: It is instructive throughout to restrict to the case $n = 1$, in which case the generic fiber consists of two points. You may wish to restrict your proofs to the cases $n = 1$ and $n = 2$.

(a) Show that for M^2_2 is symplectomorphic to T^*S^n. Show that $\pi: M^2_k \to \mathbb{C}$ is the pullback by the map $\mathbb{C} \to \mathbb{C}$ given by $w \mapsto 1 - w^k$ of the standard Lefschetz fibration from \mathbb{C}^n to \mathbb{C} with one singularity.

(b) Let p and q be distinct critical points of π. Show that matching cycles from p to q over isotopic paths γ_1 and γ_2 are symplectically isotopic.

Matching cycle: Consider a path γ from one critical value to the other and a point x on this path. Form two Lagrangian disks (Lefschetz thimbles) with boundary spheres contained in the fiber over x by taking points over γ to the left/right of x limiting to the left/right (respectively) critical point under the horizontal flow over the path γ. Suppose (as is true in our case) the boundaries of these disks are isotopic in the fiber over x. Then after isotoping one of the disks and gluing it to the other disk, we obtain a Lagrangian sphere, our matching cycle.

(c) Let p, q, r be distinct critical points of π. Let L_{pq} be a matching cycle from p to q over a path γ_{pq} in \mathbb{C} from $\pi(p)$ to $\pi(q)$ avoiding all other critical values and L_{qr} a matching cycle from q to r over a path γ_{qr} from $\pi(q)$ to $\pi(r)$. Show that $\tau_{L_{qr}}L_{pq}$ is symplectically isotopic to a matching cycle L_{pr} over the path γ_{pr} given by concatenating γ_{pq} and γ_{qr} and pushing off the critical value $\pi(q)$ “to the right” (as viewed along the path from $\pi(p)$ to $\pi(r)$).