1. Suppose ω_1 and ω_2 are two symplectic forms on a compact manifold M with $[\omega_1] = [\omega_2]$ in $H^2(M)$. Suppose J is an almost complex structure on M which is ω_1-compatible and ω_2-compatible. Show that (M, ω_1) and (M, ω_2) are symplectomorphic.

2. (Fiber connect sum, due to Gompf) Suppose (Q, ω_Q) and (M, ω_M) are symplectic of dimension $2n-2$ and $2n$ respectively (Q compact), with two disjoint symplectic embeddings j_1 and j_2 of Q into M. Let ν_1 and ν_2 be the (symplectic) normal bundles of the two embeddings. Suppose $c_1(\nu_1) = -c_1(\nu_2)$. Show that there exist neighborhoods $N_1(j_1(Q))$ and $N_2(j_2(Q))$ and a diffeomorphism $\phi: \partial N_1 \to \partial N_2$ such that $\#\phi M = (M - N_1 - N_2)/(x \sim \phi x)$ carries a symplectic structure.

3. Let $\Lambda_{Gr}(n)$ be the space of Lagrangian subspaces of $(\mathbb{R}^{2n}, \omega_0)$.
 (a) Compute the dimension of $\Lambda_{Gr}(n)$.
 (b) Compute $\pi_1(\Lambda_{Gr}(n))$.
 (c) Identify $\Lambda_{Gr}(1)$ with a well-known manifold (or in terms of well-known manifolds).
 (d) Identify $\Lambda_{Gr}(2)$ with a well-known manifold (or in terms of well-known manifolds).

4. Let $H = \sum_i x_i^2 + \sum_i y_i^2$ be a Hamiltonian function on \mathbb{R}^{2n}.
 (a) Identify the space of (primitive) periodic orbits of the associated Hamiltonian system restricted to the level surface $H = 1$. (Primitive means that the orbit is not a multiple cover of another orbit.)
 (b) For $n = 2$, show that there exists a small perturbation \tilde{H} of H with only two (primitive) periodic orbits on the level surface $\tilde{H} = 1$.
 (c) Repeat (b) with n (primitive) periodic orbits for general n.

1