1. (a) Define immersion.
A smooth map \(f : X \to Y \) is an immersion if \(df_x : TX_x \to TY_{f(x)} \) is injective for all \(x \in X \).

(b) Define what it means for a property of smooth maps to be stable.
A property of smooth maps, say from \(X \) to \(Y \), is stable if for any smooth map \(F : X \times I \to Y \) such that \(F(\cdot, 0) : X \to Y \) has that property, there exists \(\epsilon > 0 \) such that that \(F(\cdot, t) \) has that property for \(0 \leq t < \epsilon \).

(c) Suppose \(X \) is compact. Show that the property of being an immersion from \(X \) to \(Y \) is a stable property among maps from \(X \) to \(Y \).
Let \(f_t(x) = F(x, t) \) for \(F : X \times I \to Y \) a homotopy with \(f_0 : X \to Y \) an immersion. Let \(X \) and \(Y \) be \(k \) and \(\ell \) dimensional, respectively.
First, we claim that given \((p, 0) \in X \times I \), there is an open set \(U_p \subset X \times I \) containing it such that \((df_t)_x \) is injective for \((x, t) \in U_p \). To get such an open set, we work in a chart \(\phi : V \to X \) with \(\phi(0) = p \) (and \(0 \in V \)) and give a map \(g : V \times I \to \mathbb{R}^k \) with \(g(x, t) \) giving the determinants of \(k \times k \) minors of \((df_t)_x \). A linear map from \(\mathbb{R}^k \) to \(\mathbb{R}^\ell \) is injective if and only if some \(k \times k \) minor has nonzero determinant. Then we let \(U_p \) be the image under \(\phi \) of \(V - g^{-1}(0) \).
Next, we claim that there exists \(\epsilon > 0 \) such that \(X \times [0, \epsilon) \subset \bigcup_{p \in X} U_p \). To see this, shrink each \(U_p \) to be a product open set of the form \(V_p \times [0, \epsilon_p) \) with \(V_p \subset X \) open containing \(p \). Then notice only finitely many \(V_p \) are required to cover \(X \) by compactness. Let \(\epsilon \) be the minimum of the \(\epsilon_p \) for the finite collection of \(V_p \) that cover.

2. Determine whether the equation(s) smoothly cut(s) out a manifold, and what the dimension of the manifold is if so:
(a) \(xyz = 1 \) in \(\mathbb{R}^3 \)
Let \(g(x, y, z) = xyz \). Then \(dg_{(x,y,z)} = (yz, xz, xy) \). This is only zero if at least two of the \(x, y, z \) are zero. But none of \(x, y, z \) can be zero on \(g^{-1}(1) \). Hence \(dg_p \) is nonzero, hence surjective to \(\mathbb{R} \), for all solutions to \(xyz = 1 \). Hence this is a smooth manifold of dimension \(3 - 1 = 2 \).
(b) \(x^3 - y^2 = 0 \) in \(\mathbb{R}^2 \)
Let \(g(x, y) = x^3 - y^2 \). Then \(dg_{(x, y)} = (3x^2, -2y) \). This is zero, hence not surjective, for \((x, y) = (0, 0) \). Hence the solutions to the equation are not smoothly cut out.
(c) \(x^2 + y^2 + z^2 = 1 \) and \(x + y + z = 1 \) in \(\mathbb{R}^3 \)
Letting \(g = x^2 + y^2 + z^2 \) we have \(dg = (2x, 2y, 2z) \). For the second, let \(h = x + y + z \) and \(dh = (1, 1, 1) \). We have that \(dg \) and \(dh \) are linearly independent on solutions to the equations
if and only if the map \(f = (g, h) : \mathbb{R}^3 \to \mathbb{R}^2 \) has \(df \) surjective on preimages of \((1, 1)\). They are linearly dependent if and only if \(x = y = z \). Plugging in, we see that for the latter each would have to be 1/3 while for the former each would have to be \(\pm \frac{1}{\sqrt{3}} \). Hence they are linearly independent at all solutions to \(f = (1, 1) \) and hence the solutions are smoothly cut out.

3. We say two maps \(f : X \to Z \) and \(g : Y \to Z \) are transversal if whenever \(f(x) = g(y) \) we have \(\text{im}(df_x) + \text{im}(dg_y) = TZ_{f(x)} \). Show that \(f \) and \(g \) are transversal if and only if \(f \times g \) and \(\Delta \) are transversal, where \(f \times g : X \times Y \to Z \times Z \) is given by \((f \times g)(x, y) = (f(x), g(y))\) and \(\Delta = \{(z, z) : z \in Z\} \subset Z \times Z \).

Step 0: We have that \(T\Delta_{(x, z)} = \{(w, w) \in TZ_x \oplus TZ_z : w \in TZ_z\} \) because the map \(Z \to \Delta \) with \(z \mapsto (z, z) \) and projection to the first factor from \(\Delta \to Z \) are inverses and hence diffeomorphisms, and the derivative of the first takes \(TZ \) to the aforementioned set.

Step 1: \(f \times g \) and \(\Delta \) transversal implies \(f \) and \(g \) are transversal. We need to show that at a point \(z = f(x) = g(y) \) and a vector \(w \in TZ_z \) we have \(u \in TX_x \) and \(v \in TY_y \) such that \(df_x(u) + dg_y(v) = w \). To get this, find \((u', v') \in T(X \times Y)_{(x, y)}\) and \(a \in TZ_z \) such that \((a, a) + d(f \times g)(x, y)(u', v') = (w, 0)\) by transversality of \(f \times g \) and \(\Delta \). Then \(df_x(u') - dg_y(v') = w \). Now let \(u = u' \) and \(v = -v' \).

Step 2: \(f \) and \(g \) are transversal implies \(f \times g \) and \(\Delta \) transversal. We need to show that at a point \((z, z)\) with \(z = f(x) = g(y) \) and given \((a, b) \in TZ_z\) we have \(u \in TX_x \) and \(v \in TY_y \) and \(w \in TZ_z \) such that \((df_x(u), dg_y(v)) + (w, w) = (a, b)\). To get this, let \(u' \) and \(v' \) be such that \(df_x(u') + dg_y(v') = a - b \) by transversality of \(f \) and \(g \). Then let \(u = u' \) and \(v = -v' \) and \(w = b + dg_y(v') \).

4. Let \(X \subset \mathbb{R}^n \) be a compact submanifold of dimension \(n - 1 \) not containing the origin. Show that for almost every \(v \in S^{n-1} \), the ray \(R_v = \{tv : t \in \mathbb{R}, t \geq 0\} \) intersects \(X \) in only finitely many points.

Since \(X \) does not contain the origin, we have a map \(f : X \to S^{n-1} \) given by \(p \mapsto \frac{p}{\|p\|} \). Almost every value in \(S^{n-1} \) is regular for \(f \) by Sard’s theorem. At a regular value \(v \), we claim there are only finitely many preimages. At each preimage point, \(df \) is a local diffeomorphism. Hence there is an open set \(U \) around the preimage point such that \(f^{-1}(v) \cap U \) is only one point. Also, \(f^{-1}(v) \) is closed in a compact space \(X \), hence compact. If \(f^{-1}(v) \) were infinite, it would have an accumulation point, but this is impossible because the points are isolated (in their open sets with only one point in \(f^{-1}(v) \) in them).