1. [Artin 2011 2.8.3-4] (a) Show that every group of order p^k (where p prime) contains an element of order p.

(b) Show that every group of order 35 contains an element of order 5 and an element of order 7.

Remark: The more general case for (b) of a group of order pq remains elusive for the moment, but, as we will see later, if $p \mid |G|$ then G has an element of order p.

(a) Let G be of order p^k, with p prime and let 1 denote the identity. Choose some element $x \neq 1$ of G. Then the order of x divides the order of G. Hence the order of x, i.e. the smallest positive power that is the identity, is p^m for some $m \leq k$. Then I claim $y = x^{(p^m - 1)}$ has order p. Indeed, if $0 < a < p$ then $y^a = x^{(ap^m - 1)}$ and $ap^m - 1 < p^m$ so this is not equal to 1. Further $y^p = x^{(p^m)} = 1$.

(b) Let G be a group of order 35. Any non-identity element has order greater than 1 and dividing $|G| = 35$, hence is 5, 7, or 35. If there’s an element x of order 35 then, as in (a), we get an element x^7 of order 5 and x^5 of order 7 and we’re done in this case.

Thus the only way for there not to be both an element of order 5 and an element of order 7 is for there to be, other than the identity, only elements of order 5 or of order 7.

Suppose all elements are of order 5. Then I claim that the sets of the form $S_x = \{x, x^2, x^3, x^4 \mid x \in G - \{1\}\}$ partition $G - \{1\}$. Indeed, if S_x and S_y overlap, then $x^a = y^b$ for some a and b not equivalent to zero mod 5. Because 5 is prime, there is some s such that $sa \equiv 1 \pmod{5}$ by problem set 2 problem 6. Hence $x = y^s$. So $S_x \subset S_y$ (because the latter contains all non-identity powers of y). Likewise we see $S_y \subset S_x$.

Thus if all elements except 1 are of order 5, then $5 - 1 = 4$ divides $|G| - 1$. But 4 does not divide $35 - 1 = 34$.

Similarly, if all elements are of order 7, then $7 - 1 = 6$ divides $|G| - 1$. But 6 does not divide 34 either.

Thus there are elements of both orders, 5 and 7.
4. Show there are precisely two isomorphism classes of groups of order $2p$ where p is an odd prime. Describe them. (Hint: Use your work and/or results from problems 1, 2, and 3.)

Let G be a group of order $2p$. By the reasoning in 1(b), we see that there can’t be only elements (other than the identity) of order p because $p - 1$ doesn’t divide $|G| - 1 = 2p$. Also, by the result in 3(b) that the order of a group in which every element (other than the identity) has order 2 is 2^n shows that we don’t have every element (other than the identity) of order 2.

Thus there is at least one element of order 2 and at least one element of order p. The element of order p generates a (cyclic) subgroup we’ll call H of order p. We have $[G : H] = 2p/p = 2$. Hence by problem 2(a) we see H is normal. Let K be the subgroup generated by the element of order 2. We have $H \cap K = \{1\}$. I claim HK is all of G. Indeed, I claim it has $2p$ distinct elements: suppose $h_1k_1 = h_2k_2$. Then $h_2^{-1}h_1 = k_2k_1^{-1}$. Thus both are 1 and so $h_1 = h_2$ and $k_1 = k_2$. Thus elements of the form hk are distinct for all pairs (h, k). Thus there are $2p$ distinct elements of this form, hence all of G.

Thus we’re in the situation in which we have a semidirect product (H normal subgroup, K a subgroup, $H \cap K = \{1\}$, $HK = G$). Thus $G = H \rtimes_{\phi} K$ for some $\phi : K \to Aut(H)$. We choose isomorphisms of H with $\mathbb{Z}/p\mathbb{Z}$ and of K with $\mathbb{Z}/2\mathbb{Z}$. Such a ϕ is determined by where $1 \in \mathbb{Z}/2\mathbb{Z}$ is sent. Our choices are any element of $Aut(\mathbb{Z}/p\mathbb{Z})$ of order 2. By problem set 2 problem 6, $Aut(\mathbb{Z}/p\mathbb{Z})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^*$. An element of order 2 is an element $a \in (\mathbb{Z}/p\mathbb{Z})^*$ such that $a^2 \equiv 1 \pmod{p}$.

I claim only 1 and $-1 \equiv p - 1$ satisfy this. Indeed, suppose p divides $a^2 - 1$ (i.e. $a^2 - 1$ is zero mod p). Then, using that $a^2 - 1 = (a - 1)(a + 1)$, we see that either p divides $a - 1$ or p divides $a + 1$. These are the two cases of a equivalent to 1 and -1 modulo p.

Hence there are two groups. If we choose ϕ sending $1 \in \mathbb{Z}/2\mathbb{Z}$ to the identity automorphism, we get $C_2 \times C_p \cong C_{2p}$. If we choose ϕ sending $1 \in \mathbb{Z}/2\mathbb{Z}$ to the automorphism “multiplication by -1” then we get the dihedral group D_p (which was described in class as precisely this semidirect product).