1. [BN, 7.13]
Show that \(f(z) = \int_{0}^{1} \frac{\sin(zt)}{t} \, dt \) is an entire function
(a) by using Morera’s theorem
(b) by obtaining a power series expansion

2. [BN, 7.14]
Let \(f(z) \) be as given in problem 1. Show that \(f'(z) = \int_{0}^{1} \cos(zt) \, dt \)
(a) using \(\frac{d}{dz} \left(\frac{\sin(zt)}{t} \right) = \cos(zt) \)
(b) using power series

3. [BN, 9.9 and 10.1] For each of the following functions: find their singularities; classify them as removable, pole of order \(k \) [please give \(k \)], or essential; and determine the residue at each singularity.

(a) \(\frac{1}{z^4+z^2} \)
(b) \(\cot(z) \)
(c) \(\csc(z) \)
(d) \(\frac{e^{1/z^2}}{z-1} \)
(e) \(\frac{1}{z^2+3z+2} \)
(f) \(\sin(1/z) \)
(g) \(ze^{3/z} \)
(h) \(\frac{1}{az^2+bz+c} \) for \(a \neq 0 \)

4. (a) [BN 9.10] Find the principal part of the Laurent expansion of \(f(z) = \frac{1}{(z^2+1)^2} \) about the point \(z = i \).
(b) Compute \(\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} \, dx \)

Remark: Recall that the principal part of a Laurent expansion \(\sum_{-\infty}^{\infty} c_k z^k \) are the terms with negative exponent, i.e. \(\sum_{-\infty}^{-1} c_k z^k \).

5. [BN 9.11] Find the Laurent expansions for

(a) \(\frac{1}{z^4+z^2} \) about \(z = 0 \)
(b) \(\frac{e^{1/z^2}}{z-1} \) about \(z = 0 \)
(c) \(\frac{1}{z^2-1} \) about \(z = 2 \)