1. Let X be a compact n-dimensional differentiable manifold, and $Y \subset X$ a closed submanifold of dimension m. Show that the Euler characteristic $\chi(X \setminus Y)$ of the complement of Y in X is given by

$$\chi(X \setminus Y) = \chi(X) + (-1)^{n-m-1}\chi(Y).$$

Does the same result hold if we do not assume that X is compact, but only that the Euler characteristics of X and Y are finite?

2. Prove that the infinite sum

$$\sum_{p \text{ prime}} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \ldots$$

diverges.

3. Let $h(x)$ be a C^∞ function on the real line \mathbb{R}. Find a C^∞ function $u(x,y)$ on an open subset of \mathbb{R}^2 containing the x-axis such that

$$\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = u^2$$

and $u(x,0) = h(x)$.

4. a) Let K be a field, and let $L = K(\alpha)$ be a finite Galois extension of K. Assume that the Galois group of L over K is cyclic, generated by an automorphism sending α to $\alpha + 1$. Prove that K has characteristic $p > 0$ and that $\alpha^p - \alpha \in K$.

b) Conversely, prove that if K is of characteristic p, then every Galois extension L/K of degree p arises in this way. (Hint: show that there exists $\beta \in L$ with trace 1, and construct α out of the various conjugates of β.)
5. For small positive α, compute

$$\int_0^\infty \frac{x^\alpha \, dx}{x^2 + x + 1}.$$

For what values of $\alpha \in \mathbb{R}$ does the integral actually converge?

6. Let $M \in \mathcal{M}_n(\mathbb{C})$ be a complex $n \times n$ matrix such that M is similar to its complex conjugate \overline{M}; i.e., there exists $g \in GL_n(\mathbb{C})$ such that $\overline{M} = gMg^{-1}$. Prove that M is similar to a real matrix $M_0 \in \mathcal{M}_n(\mathbb{R})$.
QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Wednesday, March 13 (Day 2)

1. Prove the Brouwer fixed point theorem: that any continuous map from the closed n-disc $D^n \subset \mathbb{R}^n$ to itself has a fixed point.

2. Find a harmonic function f on the right half-plane $\{ z \in \mathbb{C} \mid \text{Re } z > 0 \}$ satisfying
 \[
 \lim_{x \to 0^+} f(x + iy) = \begin{cases} 1 & \text{if } y > 0 \\ -1 & \text{if } y < 0 \end{cases}.
 \]

3. Let n be any integer. Show that any odd prime p dividing $n^2 + 1$ is congruent to 1 (mod 4).

4. Let V be a vector space of dimension n over a finite field with q elements.
 a) Find the number of one-dimensional subspaces of V.
 b) For any $k : 1 \leq k \leq n - 1$, find the number of k-dimensional subspaces of V.

5. Let K be a field of characteristic 0. Let \mathbb{P}^N be the projective space of homogeneous polynomials $F(X,Y,Z)$ of degree d modulo scalars ($N = d(d+3)/2$). Let $W \subset \mathbb{P}^N$ be the subset of polynomials F of the form
 \[
 F(X,Y,Z) = \prod_{i=1}^{d} L_i(X,Y,Z)
 \]
 for some collection of linear forms L_1, \ldots, L_d.
 a. Show that W is a closed subvariety of \mathbb{P}^N.
 b. What is the dimension of W?
 c. Find the degree of W in case $d = 2$ and in case $d = 3$.
6. a. Suppose that $M \to \mathbb{R}^{n+1}$ is an embedding of an n-dimensional Riemannian manifold (i.e., M is a hypersurface). Define the *second fundamental form* of M.

b. Show that if $M \subset \mathbb{R}^{n+1}$ is a compact hypersurface, its second fundamental form is positive definite (or negative definite, depending on your choice of normal vector) at at least one point of M.
1. In \mathbb{R}^3, let S, L and M be the circle and lines

\[
S = \{(x, y, z) : x^2 + y^2 = 1; \ z = 0\} \\
L = \{(x, y, z) : x = y = 0\} \\
M = \{(x, y, z) : x = \frac{1}{2}; \ y = 0\} \\
\]

respectively.

a. Compute the homology groups of the complement $\mathbb{R}^3 \setminus (S \cup L)$.

b. Compute the homology groups of the complement $\mathbb{R}^3 \setminus (S \cup L \cup M)$.

2. Let $L, M, N \subset \mathbb{P}^3_\mathbb{C}$ be any three pairwise disjoint lines in complex projective threespace. Show that there is a unique quadric surface $Q \subset \mathbb{P}^3_\mathbb{C}$ containing all three.

3. Let G be a compact Lie group, and let $\rho : G \to GL(V)$ be a representation of G on a finite-dimensional \mathbb{R}-vector space V.

a) Define the dual representation $\rho^* : G \to GL(V^*)$ of V.

b) Show that the two representations V and V^* of G are isomorphic.

c) Consider the action of $SO(n)$ on the unit sphere $S^{n-1} \subset \mathbb{R}^n$, and the corresponding representation of $SO(n)$ on the vector space V of C^∞ \mathbb{R}-valued functions on S^{n-1}. Show that each nonzero irreducible $SO(n)$-subrepresentation $W \subset V$ of V has a nonzero vector fixed by $SO(n-1)$, where we view $SO(n-1)$ as the subgroup of $SO(n)$ fixing the vector $(0, \ldots, 0, 1)$.

4. Show that if K is a finite extension field of \mathbb{Q}, and A is the integral closure of \mathbb{Z} in K, then A is a free \mathbb{Z}-module of rank $[K : \mathbb{Q}]$ (the degree of the field extension). (Hint: sandwich A between two free \mathbb{Z}-modules of the same rank.)
5. Let \(n \) be a nonnegative integer. Show that
\[
\sum_{0 \leq k \leq l \atop k+l=n} (-1)^l \binom{l}{k} = \begin{cases}
1 & \text{if } n \equiv 0 \pmod{3} \\
-1 & \text{if } n \equiv 1 \pmod{3} \\
0 & \text{if } n \equiv 2 \pmod{3}
\end{cases}.
\]
(Hint: Use a generating function.)

6. Suppose \(K \) is integrable on \(\mathbb{R}^n \) and for \(\epsilon > 0 \) define
\[
K_\epsilon(x) = \epsilon^{-n} K\left(\frac{x}{\epsilon}\right).
\]
Suppose that \(\int_{\mathbb{R}^n} K = 1 \).
 a. Show that \(\int_{\mathbb{R}^n} K_\epsilon = 1 \) and that \(\int_{|x|>\delta} |K_\epsilon| \to 0 \) as \(\epsilon \to 0 \).
 b. Suppose \(f \in L^p(\mathbb{R}^n) \) and for \(\epsilon > 0 \) let \(f_\epsilon \in L^p(\mathbb{R}^n) \) be the convolution
\[
f_\epsilon(x) = \int_{y \in \mathbb{R}^n} f(y) K_\epsilon(x-y) dy.
\]
Show that for \(1 \leq p < \infty \) we have
\[
\|f_\epsilon - f\|_p \to 0 \text{ as } \epsilon \to 0.
\]
 c. Conclude that for \(1 \leq p < \infty \) the space of smooth compactly supported functions on \(\mathbb{R}^n \) is dense in \(L^p(\mathbb{R}^n) \).
Extra problems: Let me know if you think these should replace any of the ones above, either for balance or just by preference.

1. Suppose that $M \rightarrow \mathbb{R}^N$ is an embedding of an n-dimensional manifold into N-dimensional Euclidean space. Endow M with the induced Riemannian metric. Let $\gamma : (-1, 1) \rightarrow M$ be a curve in M and $\overline{\gamma} : (-1, 1) \rightarrow \mathbb{R}^N$ be given by composition with the embedding. Assume that $\| \frac{d\gamma}{dt} \| \equiv 1$. Prove that γ is a geodesic iff

$$\frac{d^2\overline{\gamma}}{dt^2}$$

is normal to M at $\gamma(t)$ for all t.

2. Let A be a commutative Noetherian ring. Prove the following statements and explain their geometric meaning (even if you do not prove all the statements below, you may use any statement in proving a subsequent one):

 a) A has only finitely many minimal prime ideals $\{p_k | k = 1, \ldots, n\}$, and every prime ideal of A contains one of the p_k.

 b) $\bigcap_{k=1}^{n} p_k$ is the set of nilpotent elements of A.

 c) If A is reduced (i.e., its only nilpotent element is 0), then $\bigcup_{k=1}^{n} p_k$ is the set of zero-divisors of A.

4. Let A be the $n \times n$ matrix

$$
\begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1/n & 1/n & 1/n & \ldots & 1/n
\end{pmatrix}
$$

Prove that as $k \rightarrow \infty$, A^k tends to a projection operator P onto a one-dimensional subspace. Find the kernel and image of P.