QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Tuesday January 20, 2015 (Day 1)

1. (AG) Let $C \subset \mathbb{P}^2$ be a smooth plane curve of degree d.

 (a) Let K_C be the canonical bundle of C. For what integer n is it the case that $K_C \cong \mathcal{O}_C(n)$?

 (b) Prove that if $d \geq 4$ then C is not hyperelliptic.

 (c) Prove that if $d \geq 5$ then C is not trigonal (that is, expressible as a 3-sheeted cover of \mathbb{P}^1).

2. (A) Let S_4 be the group of automorphisms of a 4-element set. Give the character table for S_4 and explain how you arrived at it.

3. (DG) Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 - z^3 - z = 0\}$.

 (a) Prove that M is a smooth surface in \mathbb{R}^3.

 (b) For what values of $c \in \mathbb{R}$ does the plane $z = c$ intersect M transversely?

4. (RA) Define the Banach space \mathcal{L} to be the completion of the space of continuous functions on the interval $[-1, 1] \subset \mathbb{R}$ using the norm

$$ ||f|| = \int_{-1}^{1} |f(t)|dt. $$

Suppose that $f \in \mathcal{L}$ and $t \in [-1, 1]$. For $h > 0$, let I_h be the set of points in $[-1, 1]$ with distance h or less from t. Prove that

$$ \lim_{h \to 0} \int_{t \in I_h} |f(t)|dt = 0 $$

5. (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,?

 (a) with coefficients in \mathbb{Z}?

 (b) with coefficients in $\mathbb{Z}/2$?

 (c) with coefficients in $\mathbb{Z}/3$?

6. (CA) Let Ω be an open subset of the Euclidean plane \mathbb{R}^2. A map $f : \Omega \to \mathbb{R}^2$ is said to be conformal at $p \in \Omega$ if its differential df_p preserves the angle between any two tangent vectors at p. Now view \mathbb{R}^2 as \mathbb{C} and a map $f : \Omega \to \mathbb{R}^2$ as a \mathbb{C}-valued function on Ω.
(a) Supposing that \(f \) is a holomorphic function on \(\Omega \), prove that \(f \) is conformal where its differential is nonzero.

(b) Suppose that \(f \) is a nonconstant holomorphic function on \(\Omega \), and \(p \in \Omega \) is a point where \(df_p = 0 \). Let \(L_1 \) and \(L_2 \) denote distinct lines through \(p \). Prove that the angle at \(f(p) \) between \(f(L_1) \) and \(f(L_2) \) is \(n \) times that between \(L_1 \) and \(L_2 \), with \(n \) being an integer greater than 1.
1. (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \leq x \leq 1\}$.

(a) What are the homology groups of X?
(b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?

2. (A) Let $f(t) = t^4 + bt^2 + c \in \mathbb{Z}[t]$.

(a) If E is the splitting field for f over \mathbb{Q}, show that $Gal(E/\mathbb{Q})$ is isomorphic to a subgroup of the dihedral group D_8.
(b) Given an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Justify.
(c) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Justify.
(d) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to D_8.

3. (CA) Let $a \in (0, 1)$. By using a contour integral, compute

$$\int_0^{2\pi} \frac{dx}{1 - 2a \cos x + a^2}.$$

4. (AG) Let K be an algebraically closed field of characteristic 0 and let $Q \subset \mathbb{P}^n$ be a smooth quadric hypersurface over K.

(a) Show that Q is rational by exhibiting a birational map $\pi : Q \to \mathbb{P}^{n-1}$.
(b) How does the map π factor into blow-ups and blow-downs?

5. (DG) Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

be the unit sphere centered at the origin in \mathbb{R}^3.

(a) Prove that the vector field

$$v = yz \frac{\partial}{\partial x} + zx \frac{\partial}{\partial y} - 2xy \frac{\partial}{\partial z}$$

on \mathbb{R}^3 is tangent to S at all points of S, and thus defines a section of the tangent bundle TS.

QUALIFYING EXAMINATION
HARVARD UNIVERSITY
Department of Mathematics
Wednesday January 21, 2015 (Day 2)
(b) Let \(g \) be the metric on \(S \) induced from the euclidean metric on \(\mathbb{R}^3 \), and let \(\nabla \) be the associated, metric compatible, torsion free covariant derivative. The tensor \(\nabla v \) is a section of \(TS \otimes TS^* \). Write \(\nabla v \) at the point \((0,0,1) \in S\) using the coordinates \((x_1, x_2)\) given by the map \((x_1, x_2) \mapsto (x_1, x_2, \sqrt{1 - x_1^2 - x_2^2})\) from the unit disc \(x_1^2 + x_2^2 < 1 \) to \(S \).

6. (RA) Let \(L \) be a positive real number.

(a) Compute the Fourier expansion of the function \(x \) on the interval \([-L, L] \subset \mathbb{R}\).

(b) Prove that the Fourier transform does not converge to \(x \) pointwise on the closed interval \([-L, L]\).
1. (DG) The helicoid is the parametrized surface given by
 \[\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 : (u, v) \mapsto (v \cos u, v \sin u, au) \]
 where \(a \) is a real constant. Compute its induced metric.

2. (RA) A real valued function defined on an interval \((a, b) \subset \mathbb{R}\) is said to be convex if
 \[f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) \]
 whenever \(x, y \in (a, b) \) and \(t \in (0, 1) \).
 (a) Give an example of a non-constant, non-linear convex function.
 (b) Prove that if \(f \) is a non-constant convex function on \((a, b) \subset \mathbb{R}\), then the set of local minima of \(f \) is a connected set where \(f \) is constant.

3. (AG) Let \(K \) be an algebraically closed field of characteristic 0, and let \(\mathbb{P}^n \) be the projective space of homogeneous polynomials of degree \(n \) in two variables over \(K \). Let \(X \subset \mathbb{P}^n \) be the locus of \(n^{th} \) powers of linear forms, and let \(Y \subset \mathbb{P}^n \) be the locus of polynomials with a multiple root (that is, a repeated factor).
 (a) Show that \(X \) and \(Y \subset \mathbb{P}^n \) are closed subvarieties.
 (b) What is the degree of \(X \)?
 (c) What is the degree of \(Y \)?

4. (AT) Let \(X \) be a compact, connected and locally simply connected Hausdorff space, and let \(p : \tilde{X} \rightarrow X \) be its universal covering space. Prove that \(\tilde{X} \) is compact if and only if the fundamental group \(\pi_1(X) \) is finite.

5. (CA) Prove that if \(f \) and \(g \) are entire holomorphic functions and \(|f| \leq |g| \) everywhere, then \(f = \alpha \cdot g \) for some complex number \(\alpha \).

6. (A) Consider the rings
 \[R = \mathbb{Z}[x]/(x^2 + 1) \quad \text{and} \quad S = \mathbb{Z}[x]/(x^2 + 5). \]
 (a) Show that \(R \) is a principal ideal domain.
 (b) Show that \(S \) is not a principal ideal domain, by exhibiting a non-principal ideal.