1. Let \((X, \mu)\) be a measure space with \(\mu(X) < \infty\). For \(q > 0\), let \(L^q = L^q(X, \mu)\) denote the Banach space completion of the space of bounded functions on \(X\) with the norm

\[||f||_q = \left(\int_X |f|^q \mu \right)^{\frac{1}{q}}. \]

Now suppose that \(0 < p \leq q\). Prove that all functions in \(L^q\) are in \(L^p\), and that the inclusion map \(L^q \hookrightarrow L^p\) is continuous.

2. Let \(X \subset \mathbb{P}^n\) be an irreducible projective variety of dimension \(k\), \(G(\ell, n)\) the Grassmannian of \(\ell\)-planes in \(\mathbb{P}^n\) for some \(\ell < n - k\), and \(C(X) \subset G(\ell, n)\) the variety of \(\ell\)-planes meeting \(X\). Prove that \(C(X)\) is irreducible, and find its dimension.

3. Let \(\lambda\) be real number greater than 1. Show that the equation \(ze^{\lambda-z} = 1\) has exactly one solution \(z\) with \(|z| < 1\), and that this solution \(z\) is real. (Hint: use Rouché’s theorem.)

4. Let \(k\) be a finite field, with algebraic closure \(\overline{k}\).

 (a) For each integer \(n \geq 1\), show that there is a unique subfield \(k_n \subset \overline{k}\) containing \(k\) and having degree \(n\) over \(k\).

 (b) Show that \(k_n\) is a Galois extension of \(k\), with cyclic Galois group.

 (c) Show that the norm map \(k_n^* \rightarrow k^*\) (sending a nonzero element of \(k_n\) to the product of its Galois conjugates) is a surjective homomorphism.

5. Suppose \(\omega\) is a closed 2-form on a manifold \(M\). For every point \(p \in M\), let

\[R_p(\omega) = \{ v \in T_pM : \omega_p(v, u) = 0 \text{ for all } u \in T_pM \}. \]

Suppose that the dimension of \(R_p\) is the same for all \(p\). Show that the assignment \(p \mapsto R_p\) as \(p\) varies in \(M\) defines an integrable subbundle of the tangent bundle \(TM\).

6. Let \(X\) be a topological space. We say that two covering spaces \(f : Y \rightarrow X\) and \(g : Z \rightarrow X\) are isomorphic if there exists a homeomorphism \(h : Y \rightarrow Z\) such that \(g \circ h = f\). If \(X\) is a compact oriented surface of genus \(g\) (that is, a \(g\)-holed torus), how many connected 2-sheeted covering spaces does \(X\) have, up to isomorphism?
QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Wednesday January 20, 2010 (Day 2)

1. Let a be an arbitrary real number and b a positive real number. Evaluate the integral
\[\int_{0}^{\infty} \frac{\cos(ax)}{\cosh(bx)} \, dx \]
(Recall that $\cosh(x) = \cos(ix) = \frac{1}{2}(e^x + e^{-x})$ is the hyperbolic cosine.)

2. For any irreducible plane curve $C \subset \mathbb{P}^2$ of degree $d > 1$, we define the Gauss map $g : C \to \mathbb{P}^2^*$ to be the rational map sending a smooth point $p \in C$ to its tangent line; we define the dual curve $C^* \subset \mathbb{P}^2^*$ of C to be the image of g.

(a) Show that the dual of the dual of C is C itself.

(b) Show that two irreducible conic curves $C, C' \subset \mathbb{P}^2$ are tangent if and only if their duals are.

3. Let Λ_1 and $\Lambda_2 \subset \mathbb{R}^4$ be complementary 2-planes, and let $X = \mathbb{R}^4 \setminus (\Lambda_1 \cup \Lambda_2)$ be the complement of their union. Find the homology and cohomology groups of X with integer coefficients.

4. Let $X = \{(x, y, z) : x^2 + y^2 = 1\} \subset \mathbb{R}^3$ be a cylinder. Show that the geodesics on X are helices, that is, curves such that the angle between their tangent lines and the vertical is constant.

5. (a) Show that if every closed and bounded subspace of a Hilbert space E is compact, then E is finite dimensional.

(b) Show that any decreasing sequence of nonempty, closed, convex, and bounded subsets of a Hilbert space has a nonempty intersection.

(c) Show that any closed, convex, and bounded subset of a Hilbert space is the intersection of the closed balls that contain it.

(d) Deduce that any closed, convex, and bounded subset of a Hilbert space is compact in the weak topology.

6. Let p be a prime, and let G be the group $\mathbb{Z}/p^2\mathbb{Z} \oplus \mathbb{Z}/p^2\mathbb{Z}$.

(a) How many subgroups of order p does G have?

(b) How many subgroups of order p^2 does G have? How many of these are cyclic?
1. Consider the ring

\[A = \mathbb{Z}[x]/(f) \text{ where } f = x^4 - x^3 + x^2 - 2x + 4. \]

Find all prime ideals of \(A \) that contain the ideal \((3)\).

2. Let \(f \) be a holomorphic function on a domain containing the closed disc \(\{ z : |z| \leq 3 \} \), and suppose that

\[f(1) = f(i) = f(-1) = f(-i) = 0. \]

Show that

\[|f(0)| \leq \frac{1}{80} \max_{|z|=3} |f(z)| \]

and find all such functions for which equality holds in this inequality.

3. Let \(f: \mathbb{R} \rightarrow \mathbb{R}^+ \) be a differentiable, positive real function. Find the Gaussian curvature and mean curvature of the surface of revolution

\[S = \{ (x, y, z) : y^2 + z^2 = f(x) \}. \]

4. Show that for any given natural number \(n \), there exists a finite Borel measure on the interval \([0, 1] \subset \mathbb{R}\) such that for any real polynomial of degree at most \(n \), we have

\[\int_0^1 p \, d\mu = p'(0). \]

Show, on the other hand, that there does not exist a finite Borel measure on the interval \([0, 1] \subset \mathbb{R}\) such that for any real polynomial we have

\[\int_0^1 p \, d\mu = p'(0). \]

5. Let \(X = \mathbb{RP}^2 \times \mathbb{RP}^4 \).

(a) Find the homology groups \(H_*(X, \mathbb{Z}/2) \)

(b) Find the homology groups \(H_*(X, \mathbb{Z}) \)

(c) Find the cohomology groups \(H^*(X, \mathbb{Z}) \)
6. By a **twisted cubic curve** we mean the image of the map \(\mathbb{P}^1 \to \mathbb{P}^3 \) given by

\[
[X, Y] \mapsto [F_0(X, Y), F_1(X, Y), F_2(X, Y), F_3(X, Y)]
\]

where \(F_0, \ldots, F_3 \) form a basis for the space of homogeneous cubic polynomials in \(X \) and \(Y \).

(a) Show that if \(C \subset \mathbb{P}^3 \) is a twisted cubic curve, then there is a 3-dimensional vector space of homogeneous quadratic polynomials on \(\mathbb{P}^3 \) vanishing on \(C \).

(b) Show that \(C \) is the common zero locus of the homogeneous quadratic polynomials vanishing on it.

(c) Suppose now that \(Q, Q' \subset \mathbb{P}^3 \) are two distinct quadric surfaces containing \(C \). Describe the intersection \(Q \cap Q' \).