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1. (DG)

(a) Show that if V' is a C*°-vector bundle over a compact manifold X, then
there exists a vector bundle W over X such that V & W is trivializable,
i.e. isomorphic to a trivial bundle.

(b) Find a vector bundle W on S?, the 2-sphere, such that T*S? & W is
trivializable.

Solution: Since V is locally trivializable and M is compact, one can find a
finite open cover U;, i = 1,...,n, of M and trivializations T; : V|y, — RF.
Thus, each T; is a smooth map which restricts to a linear isomorphism on each
fiber of V|y,. Next, choose a smooth partition of unity {f;}i—1, .. » subordinate
to the cover {U;}i=1,.n. If p: V — M is the projection to the base, then
there are maps

Vg, — R, v fi(p(v)Ti(v)

which extend (by zero) to all of V' and which we denote by f;T;. Together, the
f;T; give a map T : V — R™ which has maximal rank %k everywhere, because
at each point of X at least one of the f; is non-zero. Thus V is isomorphic
to a subbundle, T'(V), of the trivial bundle, R™*. Using the standard inner
product on R™ we get an orthogonal bundle W = T(V)% which has the
desired property.

For the second part, embed S? into R3 in the usual way, then
TS?® Ng2 = TR?| g2
where Ng2 is the normal bundle to S? in R3. Dualizing we get
T*S? @ (Ng2)* = T*R?| 52
which solves the problem with W = (Ng2)*.

2. (RA) Let (X, d) be a metric space. For any subset A C X, and any € > 0 we
set

Be(A) = U Bﬁ(p).

peEA



(This is the “e-fattening” of A.) For Y,Z bounded subsets of X define the
Hausdorff distance between Y and Z by

du(Y,Z) :=inf{e >0|Y C Bc(Z), Z C B.(Y)}.
Show that dy defines a metric on the set X := {A C X‘ A isclosed and bounded}.

Solution: We need to show that (X,dy) is a metric space. First, since com-
pact sets are bounded, dy (Y, Z) is well defined for any compact sets Y, Z.
Secondly, dy(Y,Z) = dy(Z,Y) > 0 is obvious from the definition. We need
to prove that the distance is positive when Y # Z, and that dy satisfies the
triangle inequality. First, let us show that dgy(Y,Z) > 0if Y # Z. Without
loss of generality, we can assume there is a point p € Y N Z¢. Since Z is com-
pact, it is closed, so there exists r > 0 such that B,(p) C Z¢. In particular, p
is not in B,(Z). Thus Y is not contained in B,(Z) and so dg(Y,Z) > r > 0.

It remains to prove the triangle inequality. To this end, suppose that Y, Z, W
are compact subsets of X. Fix 1 > dy (Y, Z),e2 > dg(Z, W), then

Y CB,(Z), ZCBgqY), ZCB,W), WCB.(Z)

Then dy(Y,Z) < e1,du(Z,W) < e3. Let us prove that Y C B, 4, (W), the
other containment being identical. Fix a point y € Y. By our choice of ¢;
there exists a point z € Z such that y € N, (z). By our choice of €3 there
exists a point w € W such that z € B, (w). Then

d(y,w) < d(y, z) + d(z,w) < €1+ €

SO Y € Be te,(w). This proves the containment. The other containment is
identical, by just swapping Y, W. Thus

dg(Y,W) < e +e
But this holds for all €1, €2 as above. Taking the infimum we obtain the result.

. (AT) Let T™ = R™/Z", the n-torus. Prove that any path-connected covering
space Y — T™ is homeomorphic to T™ x R"~™, for some m.

Solution: The universal covering space of T is R", so that any path connected
covering space of X is of the form R"/G, for some subgroup G C mq(T™).
We have 7 (T") = m1(S!) x --- x m(S') = Z", and Z" is acting on R" by
translation. Thus, G C Z" is free. Choose a Z-basis (v1,...,v,) of G, and
consider the (real!) change of basis taking (v1,. .., vy ) to the first m standard
basis vectors (eq,...,ey). Hence, G is acting on R™ by translation in the first
m coordinates. Thus,

R™/G ~ R™/Z™ x R"™™ o~ T™ x R™™™,



4. (CA)
Let f: C — C be a nonconstant holomorphic function. Show that the image
of f is dense in C.

Solution: Suppose that for some wy € C and some € > 0, the image of f lies
outside the ball Bc(wp) = {w € C | |w — wp| < €}. Then the function

1
9(z) = 7o) —wo

is bounded and homomorphic in the entire plane, hence constant.
5. (A) Let F' D Q be a splitting field for the polynomial f = 2™ — 1.

(a) Let A C F* = {z € F | z # 0} be a finite (multiplicative) subgroup.
Prove that A is cyclic.
(b) Prove that G = Gal(F/Q) is abelian.

Solution: For the first part, let m = |A|. Suppose that A is not cyclic, so
that the order of any element in A is less than m. A is a finite abelian group
so it is isomorphic to a product of cyclic groups A ~ Z,, X -+ X Zy, , where
ni|n;+1. In particular, the order of any element in A divides ni. Hence, for
any z € A, 2™ = 1. However, the polynomial 2" — 1 € F[z] admits at most
ng < m roots in F', which is a contradiction. So, there must be some element
in A with order m.

For the second part, since f' = na"~! and f are relatively prime, f admits n
distinct roots 1 = 2q,...,2,—1. As F is a splitting field of f we can assume
that F' = Q(z0,...,2n-1) € C. U = {z0,...,2n-1} C F* is a subgroup
of the multiplicative group of units in F' and is cyclic; moreover, Aut(U) is
isomorphic to the (multiplicative) group of units (Z/nZ)". Restriction defines
a homomorphism G — Aut(U) , a — ajy; this homomorphism is injective
because F' = Q(zp, ..., 2n—1). In particular, G is isomorphic to a subgroup of
the abelian group (Z/nZ)*.

6. (AG) Let C and D C P? be two plane cubics (that is, curves of degree 3),
intersecting transversely in 9 points {p1,p2,...,p9}. Show that pq,...,pg lie
on a conic (that is, a curve of degree 2) if and only if p7, pg and pg are colinear.

Solution: First, observe that we can replace C = V(F) and D = V(G)
by any two independent linear combinations C' = V(agF + a1G) and D' =
V(bgF + b1G). Now suppose that py,...,pe lie on a conic Q C P?. Picking
a seventh point ¢ € @), we see that some linear combination Cy of C' and D
contains ¢ and hence contains Q; thus Cy = Q U L for some line L C P2
Replacing C' or D with Cy, we see that p7, pg and pg € L.
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(A) Let R be a commutative ring with unit. If I C R is a proper ideal, we
define the radical of I to be

VI ={aeR | a" el forsomem >0}

Prove that

Vi- ) v

p2I
p prime

Solution: First, we prove for the case I = 0. Let f € v/0 so that f* = 0,
and f" € p, for any prime ideal p C R. Let p be a prime ideal in R. The
quotient ring R/p is an integral domain and, in particular, contains no nonzero
nilpotent elements. Hence, f* +p =0 € R/p so that f € p.

Now, suppose that f ¢ v/0. The set S = {1, f, f2,...} does not contain 0 so
that the localisation Ry is not the zero ring. Let m C Ry be a maximal ideal.
Denote the canonical homomorphism j : R — Ry. As j(f) € Ry is a unit,
j(f) ¢ m. Then j~'(m) C R is a prime ideal that does not contain f. Hence,

f ¢ meR prime p.

If I C R is a proper ideal, we consider the quotient ring 7 : R — S = R/I.
Recall the bijective correspondence

{prime ideals in S} <+ {prime ideals in R containing I} , p <> 7 *(p)

Then,

Vi W=t N el N o= N e

pCS prime pCS prime q21
q prime

. (DG) Let ¢(s) = (r(s),z(s)) be a curve in the (x, z)-plane which is parame-

terized by arc length s. We construct the corresponding rotational surface, S,
with parametrization

©:(s,0)— (r(s)cosb,r(s)sinb, z(s)).

Find an example of a curve ¢ such that S has constant negative curvature —1.



Solution:

92 (5,0) = ("(s) cos " (s) s, (s))
Oy _ :
%(s, 0) = (—r(s)sinf,r(s) cosb,0)

The coeflicients of the first fundamental form are:
E=1"(5)+7(s)? =1, F =0, G =r(s)?

Curvature:

1 s ()
K= \/6852\/6_ r(s)

To get K = —1 we need to find r(s), z(s) such that

r(s) =r(s),
' (s)% 4+ 2'(5)? = 1.

A possible solution is 7(s) = e~* with
2(s) = / V1 —e2tdt = Arcosh(r™1) — /1 —r2,
. (RA) Let f € L*(0,00) and consider

F(z) = /000 f(t)e*™ = at

for z in the upper half-plane.

(a) Check that the above integral converges absolutely and uniformly in any
region Im(z) > C > 0.

(b) Show that

sup / IF(z + i) 2z = | F 22000y
y>0J0

Solution: For Im(z) > C > 0 we have
()T < |t

thus with the Cauchy—Schwarz inequality

oo ) 1/2 ) 1/2
2mizt 2 —4Crt
/0 |f(t)e" ™" |dt < (/0 £ (t)] dt) (/0 e dt)



which proves the claim.

For the second part, Plancherel’s theorem gives

00 (o]
/0 |F(z + iy)*da :/0 [F)Pe™ "™ dt < (| F1[72(0,00)

and

sup /O T lr ) Petmtar = /0 NIOR

y>0

by the monotone convergence theorem.

4. (CA) Given that fooo e da = % m, use contour integration to prove that
each of the improper integrals fooo sin(2?) dz and fooo cos(x?) dz converges to
/8.

Solution: We integrate e dz along a triangular contour with vertices at
0, M, and (1 + ¢)M, and let M — oo. Since e is holomorphic on C,
the integral vanishes. The integral from 0 to M is fOM e’ dx, which ap-
proaches fooo e dy = %\/77 The vertical integral approaches zero, because
it is bounded in absolute value by

M -\ 2 M 2 2 M
/ =M+ gy — / VM g / M=M) gy
0 0 0

M [e%s) 1
—/ eMtdt</ e Mat=—"— 50
0 0 M

(substituting ¢t = M — y in the middle step). Thus the diagonal integral (with
direction reversed, from 0 to (1 +4)oo) equals /7. The change of variable
wi/4

.. i _ip2
z = e™/*g converts this integral to e™/* fooo e " dx. Hence

1—1

2v/2 v

> 2 .. 2 9 1 _ /4
/ (cosz® —isinx )dac:/ e " d;c:§e i/ N
0 0

equating real and imaginary parts yields the required result.
5. (AT)

(a) Let X = RP3 x §? and Y = RP? x S3. Show that X and Y have the
same homotopy groups but are not homotopy equivalent.

(b) Let A = 5%2x 5% and B = CP3. Show that A and B have the same singu-
lar homology groups with Z-coefficients but are not homotopy equivalent.



Solution: The universal covers of RP? and RP? are S? and S®, respectively.
Moreover, these covers are both 2-sheeted. Hence, we have

m1(X) = 1 (RP?) x 71(5?) = 7, (RP3) = Z/2Z
1 (Y) = 7 (RP?) x 711(S%) = 7 (RP?) = Z/27Z.
Also, m(RP?) = m1,(57), for k > 1, j = 2,3 so that
(X)) = mp(S?) x mp(S3) = mp(Y), k> 1.
To show that X and Y are not homotopy equivalent, we show that they have

nonisomorphic homology groups. We make use of the following well-known
singular homology groups (with integral coefficients)

Ho(S™) = H,(S") =7, H;(S*)=0,i#0,n,
Ho(RP?) = Hy(RP?) = Z, H\(RP?) = Z/27, H;(RP?) =0,i #0,1,2
Ho(RP?) =7, Hi(RP?) = Z/27, H;(RP?) =0,i # 0,1

Now, the Kunneth theorem in singular homology (with Z-coefficients) gives
an exact sequence

0— P HiRP?) @z H;(S%) = Hy(X) — €D Tori(H;(RP?),H;(S%)) — 0
i+j=2 i+j=1

Since Hy(S?) is free, for every k, we have

Hy(X)~ @ Hi(RP?) @z H;j(S*) =Z
1+j=2

Similarly, we compute

Hy(Y) ~ P Hi(RP?) @z H;(S%) = Z,/27.
i+j=2
In particular, X and Y are not homotopy equivalent.

For the second part, B can be constructed as a cell complex with a single
cell in dimensions 0, 2,4, 6. Therefore, the homology of B is Hy;(B) = Z, for
i=0,...,3, and Hx(B) = 0 otherwise.

The Kunneth theorem for singular cohomology (with Z-coefficients), combined

with the fact that Hy(S™) is free, for any k, gives

Hy(A) ~ @ Hi(S?) @ H;(S*).
i+j=k



Hence, Hy;(A) =Z, for i = 0,...,3, and Hi(A) = 0 otherwise.

In order to show that A and B are not homotopy equivalent we will show that
they have nonisomorphic homotopy groups.

Consider the canonical quotient map C* — {0} — CP3. This restricts to
give a fiber bundle S' — S7 — CP3. The associated long exact sequence in
homotopy

oo = 1 (CP?) = m(SY) — mp(S7) = mp(CP3) — - -

together with the fact that m3(S1) = 74(S7), shows that m4(CP3) = 0. How-
ever, my(A) = m4(S%) = Z.
. (AG)
Let C' be the smooth projective curve over C with affine equation y? = f(z),
where f € C[z] is a square-free monic polynomial of degree d = 2n.

(a) Prove that the genus of C' is n — 1.

(b) Write down an explicit basis for the space of global differentials on C.
Solution: For the first part, use Riemann-Hurwitz: the 2 : 1 map from C

to the z-line is ramified above the roots of f and nowhere else (not even at
infinity because deg f is even), so

2 —29(C) = x(C) = 2x(P') — deg P = 4 — 2n,

whence g(C) =n — 1.

For the second, let wy = dx/y. This differential is holomorphic, with zeros of
order g — 1 at the two points at infinity. (Proof by local computation around
those points and the roots of P, which are the only places where holomorphy
is not immediate; dz has a pole of order —2 at infinity but 1/y has zeros of
order n at the points above z = oo, while 2y dy = P’(x) dz takes care of the
Weierstrass points.) Hence the space of holomorphic differentials contains

Q= {P(z)wo | deg P < g},

which has dimension g. Thus €2 is the full space of differentials, with basis
{wp = 2Fwy, k=0,...,9 —1}.
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1. (AT) Model S?"~! as the unit sphere in C", and consider the inclusions

SN SQn—l SN 52n+1 —

{ i

Let S°° and C*° denote the union of these spaces, using these inclusions.

(a) Show that S°° is a contractible space.

(b) The group S' appears as the unit norm elements of C*, which acts
compatibly on the spaces C" and S?"~! in the systems above. Calculate
all the homotopy groups of the homogeneous space S>°/S?.

Solution: The shift operator gives a norm-preserving injective map 7' : C* —
C®° that sends S°° into the hemisphere where the first coordinate is zero. The
line joining = € S to T'(x) cannot pass through zero, since  and T'(x) cannot
be scalar multiples, and hence the linear homotopy joining x to T'(z) shows
that T" is homotopic to the identity. However, since T'(S°°) forms an equatorial
hemisphere, there is a also a linear homotopy from T to the constant map at
either of the poles.

For the second part, because S' acts properly discontinuously on S, the
quotient sequence

St 8§ 5 g /g1
forms a fiber bundle. The homotopy groups of S' are known: mS! = Z and
T£18 1 = 0 otherwise. Since S* is contractible, the long exact sequence of
higher homotopy groups shows that ma(5>°/S1) = Z and 745(5*/S') =0
otherwise.

2. (AG) Let X C P" be a general hypersurface of degree d. Show that if

<k2d> > (k+1)(n—k)

then X does not contain any k-plane A C P".

Solution: For the first, let PV be the space of all hypersurfaces of degree d in
P"™ and let
I = {(X,A) e PY xG(k,n) | AC X}.



The fiber of T' over the point [A] € G(k,n) is just the subspace of PV corre-
sponding to the vector space of polynomials vanishing on A; since the space
of polynomials on P surjects onto the space of polynomials on A = P* this
is a subspace of codimension (k;gd) in PY. We deduce that

dmt = b+ =1+ v - (70,

in particular, if the inequality of the problem holds, then dimI' < N, so that
I' cannot dominate PV .

. (DG) Let H? := {(z,y) € R? : y > 0}. Equip H? with a metric

B dz? + dy?

Go : o

where o € R.

(a) Show that (H?, g,) is incomplete if o # 2.

(b) Identify z = x + iy. For < g Z) € SL(2,R), consider the map
z = %' Show that this defines an isometry of (H2, go).

(c) Show that (H?,gs) is complete. (Hint: Show that the isometry group
acts transitively on the tangent space at each point.)

Solution: For the first part, consider the geodesic v(t) with v(0) = (0,1), and
' (0) = a%. In order for (H2, g,) to be complete, this geodesics must exist for
all t € (—00,00). By symmetry, this geodesic must be given by

x(t) = (0,y(1))-

Furthermore, x(¢) must have constant speed, which we may as well take to be
V2
1. Thus % =1, or in other words,

j =y
If o # 2, then the solution to this ODE is

vy = (0= Sp+1) "

thus, this geodesics persists only as long as (1—§)t+1 > 0. This set is always
bounded from one side. Note that when o = 2, we get x(t) = (0, e!), which



exists for all time.

(b) To begin, note that dz ® dz = dx ® dx + dy ® dy, so we can write the
metric as

4dz ® dz
92 = "T"—""95
|z — 2|
Let A € SL(2,R), we compute
adz (az 4 b)dz dz dz
A%dz = — = (ad —b =
Tetd ¢ (cz +d)? (a °) (cz+d)?  (cz+d)?
and so A*dz = (C;fd)Q. It remains to compute
A A*5 az+b az+b  z2-2Z

cz4+d cz+d ez +d?
where we have used that A € SL(2,R). Putting everything together we get

. Adz®dz |ez4d*
92_|cz+d|4 |z — z|? -

and so SL(2,R) acts by isometry.

(¢) By the computation from part (a), we know that the geodesic— let’s call
it y0(¢)— through the point (0, 1) in the direction (0, 1) exists for all time. Let
2z = x + iy be any point in H2. By an isometry, we can map this point to
z = iy. Without loss of generality, let us assume y = 1. It suffices to show
that we can find A € SL(2,R) so that A(i) =4, and A,V = (0,1), where V'
is any unit vector in the tangent space T;H2, for then the geodesic through
i with tangent vector V will be nothing but A~!((¢)), and hence will exist
. o . b
for all time. First, observe that A(i) = 4, if and only if A = < Cib a >
Consider the rotation matrix

cosf —sin6
A_(sin0 cosd )

A straightforward computation shows that, in complex coordinates,

1
A* — — 72\/7719‘/
v (c059+isin9)2v ¢ ’

that is, A, : TyH? — T;H? acts as a rotation. Since @ is arbitrary, and the
rotations act transitively on S2, we’re done.

4. (RA)



(a) Let H be a Hilbert space, K C H a closed subspace, and z a point in
H. Show that there exists a unique y in K that minimizes the distance
|z —yll to =.

(b) Give an example to show that the conclusion can fail if H is an inner
product space which is not complete.

Solution: (a): If y,y' € K both minimize distance to z, then by the parallel-
ogram law:

y+y y—y 1
|z — THZ + HTII2 = 5(”93 —yl? + 1z —y|?) = ||z — y|?

But %y/ cannot be closer to x than y, by assumption, so y = /.

Let C' = infyeg ||z — y||, then 0 < C' < oo because K is non-empty. We can
find a sequence y,, € K such that ||z — y,| — C, which we want to show is
Cauchy. The midpoints £25¥2 are in K by convexity, so ||z — %d¥n| > C
and using the parallelogram law as above one sees that ||y, — ym| — 0 as
n,m — oo. By completeness of H the sequence y, converges to a limit y,
which is in K, since K is closed. Finally, continuity of the norm implies that
|z —yll = C.

(b): For example choose H = C([0,1]) C L?([0,1]), K the subspace of func-
tions with support contained in [0, %], and and z = 1 the constant function.

If f, is a sequence in K converging to f € H in L?-norm, then

1
/ =0
1/2

thus f vanishes on [1/2, 1], showing that K is closed. The distance ||z — y]|
can be made arbitrarily close to 1/4/2 for y € K by approximating X[o,1/2] by
continuous functions, but the infimum is not attained.

- (A)

(a) Prove that there exists a unique (up to isomorphism) nonabelian group
of order 21.

(b) Let G be this group. How many conjugacy classes does G have?

(¢) What are the dimensions of the irreducible representations of G*?7

Solution: Let G be a group of order 21, and select elements g3 and g7 of orders
3 and 7 respectively. The subgroup generated by g7 is normal — if it weren’t,
then g7 and zg7z~! witnessing nonnormality would generate a group of order



49. In particular, we have g3g7gs 1= gg for some nonzero j € Z/7. Now we
use the order of gs:

97 = 939393 - 97 95 ' 95 ' 95 "
= 9393(97)95 93"
= g3(97 )95
j3
= g? )
and hence j2 = 1 (mod 7). This is nontrivially solved by j = 2 and j = 4,

and these two cases coincide: if for instance g3grgs 1 g% , then by replacing
the generator g3 with g§ we instead see

9397(93) " = 939795 ' = g7-
We have the following conjugacy classes of elements:

e {e} forms a class of its own.
e {g7,9% g2} and {¢2, 2, g%} form classes by our choice of j.

e Any element of order 3 generates a Sylow 3—subgroup, all of which are
conjugate as subgroups. However, there cannot be an x with zgzz~! =
g3, since G has only elements of odd order. Hence, there are two final
conjugacy classes, each of size 7: those elements conjugate to g3 and

those conjugate to g%.

These five conjugacy sets give rise to five irreducible representations, which
must be of dimensions 1, 1, 1, 3, and 3 (since these square-sum to |G| = 21).

. (CA) Find (with proof) all entire holomorphic functions f : C — C satisfying
the conditions:

1. f(z+1) = f(z) for all z € C; and
2. There exists M such that |f(z)] < M exp(10|z]|) for all z € C.

Solution: The functions satisfying these conditions are precisely the C-linear
combinations of 2™, 1, and €*™%*. Indeed such f is readily seen to satisfy
the two conditions. Conversely (1) means that f descends to a function of
q := €?™* € C*, say f(z) = F(q), and then by (2) there is some M’ such
that |F(q)| < M'max(|q|~%",|q|>/™) for all ¢, whence ¢F and ¢~ 'F have
removable singularities at ¢ = 0 and ¢ = oo respectively, etc.



