THIN MATRIX GROUPS
AND THE MONODROMY
OF THE HYPERGEOMETRIC EQUATION.

Peter Sarnak
SCHMID CONFERENCE
MAY 2013.
\[\Gamma \leq \text{GL}_n(\mathbb{Z}) \]

\[G = \text{Zarishii closure of } \Gamma \text{ if } \Gamma \text{ is algebraic} \]

so \[\Gamma \leq G(\mathbb{Z}) \]

We say \(\Gamma \) is arithmetic if it is finite index in \(G(\mathbb{Z}) \) and thin if not.

Many diophantine problems, standard and more exotic are connected with orbits of such a \(\Gamma \): Fix \(\mathbf{u} \in \mathbb{Z}^n \),

\[\mathcal{O} := \Gamma \cdot \mathbf{u} \subset \mathbb{Z}^n \]
Examples of problems:

(i) If $f \in \mathbb{Z}[x_1, \ldots, x_n]$ what values does f assume on \mathcal{O}? Is there a local to global principle?

(ii) Can we find 'many' x's in \mathcal{O} at which $f(x)$ is prime or at least has few prime factors? ("Affine Sieve").

- In the case Π is arithmetic these are classical (and can be very difficult) problems.
- In the case that Π is thin the problem is much more challenging but we now have the rudiments of a theory.
A key ingredient is a weak form of the Ramanujan Conjectures for such thin Γ's. These are given in terms of properties of the corresponding congruence graphs.

Fix generators s_1, s_2, \ldots, s_t of Γ

$S = \{ s_1, s_1^{-1}, \ldots, s_t, s_t^{-1} \}$

$|S| = 2t$.

For $g \geq 1$

$\Gamma(g) \rightarrow \Gamma \rightarrow \text{reduction mod } g \rightarrow \text{GL}_n(\mathbb{Z}/g\mathbb{Z})$

$(\Gamma/\Gamma(g), S)$ finite Cayley graphs

$\exists \gamma(g) \sim s \gamma(g) \in S$.

Do these $|S|$ regular graphs form an expander family as $g \to \infty$?
Thanks to the work of many people [5-Xue], [Gamburd], [HeeLfgott], [Bourgain-Gamburd], [Bourgain-Gamburd-S], [Pyber-StabO], [Brvillard-Green-Tao], [Varju] we have

Fundamental Expansion Theorem (Salehi-Varju)

\((\pi/\pi(q), S)\) is an expander family iff \(G^0\) the identity component of \(G:=\text{Zcl}(\pi)\), is perfect (ie. \([G^0 : G^0] = G^0\)).

Application: Affine Sieve

If \(f \in \mathbb{Z}[x_1, \ldots, x_n]\) and \(O = \pi_1\)

we say that \((O, f)\) saturates if there is an \(T < \infty\) such that

\[\{x \in O : f(x) \text{ has at most } T \text{-prime factors} \}\]

is Zariski dense in \(\text{Zel}(O)\).

- The minimal such \(T\) is the saturation number \(T_0(O, f)\).
Example: (1) \(\Theta = \mathbb{Z} \), \(f(x) = x(x+2) \)
\(r_0(\Theta, f) = 2 \) \(\iff \) twin prime conjecture.

And

(2) Theorem Y. Zhang (yesterday).
\(r_0(\Theta, x(x+k)) = 2 \) for at least one even \(k \) less than \(7 \cdot 10^7 \).

Fundamental Saturation Theorem - Affine Sieve
Salehi-S (2013):
\(\Gamma, f \) as above, \(\Theta = \Gamma v < \mathbb{Z}^n \).
If \(G = \text{Zcl}(\Gamma) \) is Levi semi-simple (i.e., \(\text{rad} G \) contains no torus) then
\(r_0(\Theta, f) < \infty \).

Heuristic arguments show that the condition on the radical of \(G \) is probably necessary for saturation.
For examples of local to global principles for Apollonian packings see the recent BAMS papers of Fuchs and Kontorovich.

Ubiquity of Thin Groups?

- There is no decision procedure to tell whether a given \(A_1, A_2, \ldots, A_l \) in \(SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}) \) generate a thin group or not (Mihalova 1959). In practice if \(\Gamma \) is in fact a congruence subgroup of \(G(\mathbb{Z}) \), and is given in terms of generators, then one can verify this by producing \(g \) generators of the congruence subgroup. However if \(\Gamma \) is thin — how do we certify this?

- For a true group theorist thin is the rule! Given \(A, B \in SL_n(\mathbb{Z}) \) chosen at random (say \(||A||, ||B|| \) \(\times \) uniform measure) then with prob tending to one, \(\Gamma = \langle A, B \rangle \) has \(G = 2\sigma(\Gamma) = SL_n \), \(\Gamma \) is free and thin (Aoun, Fuchs).
HYPERBOLIC REFLECTION GROUPS (VINBERG):

\(f(x_1, x_2, \ldots, x_n) \) a rational quadratic form of signature \((n-1,1)\) \((n \geq 5)\).

\(G = O_f, \ G(Z) \) arithmetically.

Let \(R_f(Z) \) be the (normal) subgroup of \(G(Z) \) generated by all \(\beta \in G(Z) \) which induce hyperbolic reflections on \(H^{n-1} \),

Then except for finitely many special \(f \)'s

\[|O_f(Z)/R_f(Z)| = \infty. \]

MONODROMY GROUPS: A natural geometric source of finitely generated subgroups of \(GL_n(Z) \) is the monodromy representation in cohomology of a family of algebraic varieties, variations of Hodge structures, monodromy of linear differential equations, ..
· The fundamental question as to whether in the case of variation of Hodge structures the monodromy π is arithmetic was posed in 1973 by Griffiths / Schmid.

· They show that if the period map from the parameter space \mathcal{S} to the period domain D is open then π is arithmetic.

McMullen (2012) considers cyclic covers of \mathbb{P}^1:

$C_d: y^d = (x-a_1)(x-a_2) \ldots (x-a_{n+1})$

The fundamental group of the parameter space of C_d's is the (pure) braid group.

· Answering a question of McMullen Venkataramana (2013) shows that if $M \geq 2d$, the monodromy group in $\text{GL}(H_1(C)[\mathbb{Z}])$, C a base curve, is arithmetic!

· If $n=3$ and $d=18$, McMullen shows that the monodromy is thin using a relation to non-arithmetic lattices of Deligne--Mostow.
One parameter hypergeometric νF_{n-1}:

$x, \beta \in \mathbb{Q}^n$, $0 \leq \alpha_j < 1$, $0 \leq \beta_k < 1$

(*) $D u = 0$, $\Theta = \frac{\partial}{\partial z}$

$D = (\Theta + \beta_1 - 1) \cdots (\Theta + \beta_{n-1} - 2) (\Theta + \alpha_1) \cdots (\Theta + \alpha_n)$

Solutions are

$z^{-\beta} \nu F_{n-1} \left(1 + \alpha_1 - \beta_1, \ldots, 1 - \alpha_n - \beta_n; 1 + \beta_1 - \beta_1, \ldots, 1 + \beta_{n-1} - \beta_{n-1} \mid z \right)$

where ν means omit $1 + \beta_i - \beta_i$ and

$\nu F_{n-1} \left(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n \mid z \right) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \cdots (\alpha_n)_k}{(\beta_1)_k \cdots (\beta_n)_k} \frac{z^k}{k!}$

(*) is singular at $0, 1, \infty$ and the monodromy group $H(x, \beta)$ is gotten by analytic continuation along paths in $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ of a basis of solutions.

We restrict to α, β s.t. $H(x, \beta)$ up to conjugation is $\text{vi GL}_n(\mathbb{Z})$.
Beukers-Heckman compute

\[G = \text{ZcL} \left(H(\alpha, \beta) \right) \]

explicitly in terms of \(\alpha, \beta \).

In this self-dual setting it is one of

(i) Finite
(ii) On
(iii) \(\text{Sp}_n \) (only occurs if \(n \) is even)

Venkataramana (2012): \(n \geq 2 \) even

\[\alpha = \left(\frac{1}{2} + \frac{1}{n+1}, \frac{1}{2} + \frac{2}{n+1}, \ldots, \frac{1}{2} + \frac{n}{n+1} \right) \]

\[\beta = \left(0, \frac{1}{2} + \frac{1}{n}, \frac{1}{2} + \frac{2}{n}, \ldots, \frac{1}{2} + \frac{n-1}{n} \right) \]

\[G(\alpha, \beta) = \text{Sp}_n \text{ and } H(\alpha, \beta) \text{ is arithmetic!} \]

There are 112 \((\alpha, \beta) \)'s giving

\[G(\alpha, \beta) = \text{Sp}_4, \text{ all come from variations of integral Hodge structures.} \]

(DORAN-MORGAN)
Of these more than half are arithmetic (Singh-Venkataramanan 2012).

14 of these correspond to Calabi-Yau families of 3-folds.

eq: \((0,0,0,0), \left(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right)\)

\[
\text{Part of Dwork family, Candelas et al mirror symmetry family.}
\]

Brav-Thomas (2012) show that this example is thin!

They show that the generators \(q \in \mathcal{P}(\mathbb{P}^3, 0,1,003)\) A and C, about 0 and 1, play generalized ping-pong on some complicated polyhedral sets in \(\mathbb{P}^3\).

Of the 14 Calabi-Yau's 7 are thin and 3 arithmetic.
HYPERBOLIC HYPERGEOMETRIC (Fuchs-Meiri 2013)

- \((\alpha, \beta)\) is hhm if \(G(\alpha, \beta)\) is orthogonal and of signature \((n-1,1)\).
- \(n\) must be odd.

Theorem 1 (F-M-S)

With the exception of an explicit (long) list of finitely many \((\alpha, \beta)\) (all with \(n \leq 9\)), all hhm's come in 7 parametric families.

For the hhm we give a robust obstruction for \(H(\alpha, \beta)\) to be arithmetic — that is for \(H(\alpha, \beta)\) to be thin.
A rational quadratic form $f(x) = (x, x)$ is integral on the lattice $(m-1, 1)$.

$\langle x, x \rangle = -2 \quad \langle x, x \rangle = 0 \quad \langle x, x \rangle > 0$

$\langle x, x \rangle < 0$

If $(v, u) \neq 0$ then the linear reflection

$$\tau_v(y) = y - \frac{2(u, y)}{u, u} u$$

is in $O(u)$ if $u, u = \pm 1$.
If \((v, v) > 0\) then \(T_v\) induces a hyperbolic reflection on \(H^{n-1}\).

If \((v, v) < 0\) then \(T_v \in O_f\) induces a **Cartan** involution on \(H^{n-1}\).

Key observation 1: \((h, h_w)\)

\[H(\alpha, \beta) = \langle A, B \rangle\]

local monodromy \(A\) about 0 \(B\) about \(\infty\)

Then \(C = A^{-1}B\) is a **CARTAN** involution!

Up to commensurability \(H(\alpha, \beta)\) is generated by Cartan involutions.
Let
\[R_2(L) = \sum_{u \in L} : (u, u) = 2 \mathbb{Z} \]
be the root vectors giving hyperbolic reflections.

\[R_{-2}(L) = \sum_{u \in L} : (u, u) = -2 \mathbb{Z} \]
the root vectors giving Cartan involutions.

According to Vinberg / Nikulin, except for special \(f \)'s, \(|O(L)/R_2(L)| = \infty \).

Let \(\Delta \subset R_{-2}(L) \) we give a condition under which
\[\langle T_u : u \in \Delta \rangle \]
has finite image in \(O(L)/R_2(L) \).
The points of $X(L)$ are the Cartan roots $R_{-2}(L)$ joined by u to w if $(u, w) = -3$.

(minimal distance these can be !)

Lemma: \[\text{If } \Delta \text{ is in a connected component of } X(L) \]

Then \[\langle T_u : u \in \Delta \rangle \text{ has finite image in } O(L)/R_2(L). \]

This gives the obstruction to being arithmetic. Using it we have

\[\text{THEOREM: } n \text{ odd.} \]

\[\alpha = (0, \frac{1}{n+1}, \frac{2}{n+1}, \frac{n-1}{2(n+1)}, \frac{n+3}{2(n+1)}, \ldots, \frac{n}{n+1}), \beta = \left(\frac{1}{2}, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n} \right) \]

\[\alpha = (\frac{1}{2}, \frac{1}{2n-2}, \frac{3}{2n-2}, \ldots, \frac{2n-3}{2n-2}), \beta = (0, 0, \frac{1}{n-2}, \frac{2}{n-2}, \ldots, \frac{n-1}{n-2}) \]

are hyperbolic hypergeometrics and are arithmetic if $n = 3$ and thus if $n \geq 5$.