THE TENSOR PRODUCT OF VECTOR SPACES

TOM COATES

Abstract. My presentation of tensor products in class today was extremely confusing. Here is a (hopefully) clearer version.

1. Motivation

One of the most powerful ideas in 20th-century mathematics — an idea which will come up in a lot of classes as you study more math — is that one can study the geometry of a space X (which could be a metric space, or a topological space, or a manifold, or ...) by studying the functions on X. For example, one could study the space

$$[0, 1]$$

by studying the vector space\(^1\) of bounded continuous functions

$$C([0, 1]).$$

This suggests a question: we know how to take the product $X \times Y$ of two spaces, but how is the vector space of functions on $X \times Y$ related to the vector spaces of functions on X and functions on Y. The tensor product is the answer to this question: roughly speaking, we will define the tensor product of two vector spaces so that

$$\text{Functions}(X \times Y) = \text{Functions}(X) \otimes \text{Functions}(Y).$$

The “roughly speaking” in the last sentence is because this statement will be true only for X and Y finite sets.

Exercise. Once you have read this note, read through it again and work out why the statement isn’t true for infinite sets. What happens if we replace Functions by $\text{Functions-which-are-non-zero-at-only-finitely-many-points}$? Or by $\text{Continuous-functions}$?

One can define the tensor product of vector spaces in a number of different ways — Halmos uses a different definition, for example. His definition is significantly simpler than the one we are about to develop. The reason that I want to use this definition is that it works in a very general setting: the same construction gives the tensor product of infinite-dimensional

\(^1\)This is slightly misleading: one should study $C([0, 1])$ not as a vector space but as an algebra. This means that we should think of $C([0, 1])$ as a vector space equipped with a multiplication map

$$C([0, 1]) \times C([0, 1]) \to C([0, 1])$$

$$(f(t), g(t)) \mapsto f(t)g(t).$$

But the basic point remains: one can study $[0, 1]$ by looking at $C([0, 1])$.

Date: February 17, 2005.
vector spaces, the tensor product of modules over a ring (once one knows what modules and rings are), etc.

2. Construction

From now on, think about two finite dimensional vector spaces V and W. We will regard V as the vector space of functions on some finite set S, and W as the vector space of functions on some finite set T.

Example. In all our examples, we will take

$S = \{1, 2, 3, 4\}$

$T = \{1, 2, 3\}$

so we can think of $S \times T$ as a 4×3 grid

\[
\begin{array}{cccc}
T \\
1 & \bullet & \bullet & \bullet \\
2 & \bullet & \bullet & \bullet \\
3 & \bullet & \bullet & \bullet \\
S & 1 & 2 & 3 & 4 \\
\end{array}
\]

2.1. Functions on the product $S \times T$. Given a function $f(s)$ on S and a function $g(t)$ on the set T, we can form a function

$h(s, t) = f(s)g(t)$

on the set $S \times T$.

Example. If

\[
f(s) = \begin{cases}
1 & s = 2 \\
0 & \text{otherwise}
\end{cases}
\quad \text{and} \quad g(t) = \begin{cases}
1 & t = 1 \\
0 & \text{otherwise}
\end{cases}
\]

then we get

\[
h(s, t) = \begin{cases}
1 & (s, t) = (2, 1) \\
0 & \text{otherwise}
\end{cases}
\]

Every function on $S \times T$ can be written as a linear combination of functions which are 1 in exactly one place and 0 everywhere else, so we see that every function on $S \times T$ can be written as a linear combination of products of functions on S and functions on T:

(1) \[H(s, t) = a^{\alpha \beta} f_{\alpha}(s) g_{\beta}(t) \]

for any function $H : S \times T \to k$ and some choice of scalars $a^{\alpha \beta}$ and functions $f_{\alpha} : S \to k$, $g_{\beta} : T \to k$.
Exercise. Show that

\[H(s, t) = \begin{cases}
1 & (s, t) = (2, 1) \\
5 & (s, t) = (1, 3) \\
0 & \text{otherwise}
\end{cases} \]

is not the product of a function on \(S \) and a function on \(T \). Express \(H \) as a linear combination of products, as in (1).

Since we are thinking about \(V \) as functions on \(S \) and \(W \) as functions on \(W \), and we want \(V \otimes W \) to be functions on \(S \times T \), this suggests that elements of \(V \otimes W \) should be built as linear combinations of pairs of elements \((f, g)\), where \(f \in V \) and \(g \in W \). Here we think of the pair \((f, g)\) as representing the function

\[(s, t) \mapsto f(s)g(t)\]

on \(S \times T \).

2.2. **The free vector space generated by** \(V \times W \). The free vector space generated by \(V \times W \) is a precise version of “all linear combinations of pairs of elements \((f, g)\), where \(f \in V \) and \(g \in W \)”.

It is defined to be the vector space over \(k \) with basis

\[\{ \delta_{(f,g)} : (f, g) \in V \times W \} \]

So in other words, elements of the free vector space \(F \) generated by \(V \times W \) have the form

\[\alpha_1 \delta_{(v_1, w_1)} + \ldots + \alpha_n \delta_{(v_n, w_n)} \]

for some \(n \), some choice of scalars \(\alpha_1, \ldots, \alpha_n \), and some choice of \(n \) distinct elements \((v_1, w_1), \ldots, (v_n, w_n) \in V \times W \).

Example. Let \(v, v' \) be distinct elements of \(V \) and \(w, w' \) be distinct elements of \(W \). Then

\[
(3\delta_{(v, w)} - \delta_{(v, w')}) + 6 \left(\delta_{(v, w')} + \delta_{(v', w')} \right) = 3\delta_{(v, w)} + 5\delta_{(v, w')} + 6\delta_{(v', w')}
\]

To find out why I am using the notation \(\delta_{(v, w)} \), read the footnote\(^2\). Note that we could use this construction to make “the free vector space generated by the set \(P \)” for any set \(P \) — we never needed to use the fact that \(V \) and \(W \) are vector spaces.

\(^2\)As Toly pointed out at the end of class, another way to think about the free vector space generated by \(V \times W \) is as a vector space of functions

\[\{ F : V \times W \to k \mid F \text{ is non-zero at only finitely many points of } V \times W \} \]

A basis for this vector space is given by the “delta functions”

\[\delta_{(v, w)} : V \times W \to k \]

\[
(x, y) \mapsto \begin{cases}
1 & \text{if } (x, y) = (v, w) \\
0 & \text{otherwise}
\end{cases}
\]

These match up with the basis elements \(\delta_{(v, w)} \) used above.
2.3. **The subspace of relations** Z. To reiterate, we are thinking of elements $f \in V$ as functions on the set S and elements $g \in W$ as functions on the set T. So the free vector space F generated by $V \times W$ looks rather like the functions on $S \times T$, where we regard the element

$$\alpha_1 \delta_{(f_1, g_1)} + \ldots + \alpha_n \delta_{(f_n, g_n)} \in F$$

as representing the function on $S \times T$ which is

$$(s, t) \mapsto \alpha_1 f_1(s)g_1(t) + \ldots + \alpha_n f_n(s)g_n(t).$$

But F is not quite the functions on $S \times T$, because

$$(af_1(s) + bf_2(s))g(t) = af_1(s)g(t) + bf_2(s)g(t)$$

as functions on $S \times T$, but

$$\delta_{(af_1 + bf_2, g)} \neq a\delta_{(f_1, g)} + b\delta_{(f_2, g)}$$

in F.

In other words, if we want to turn F into the vector space of functions on $S \times T$ then we need to impose the relations

$$\delta_{(af_1 + bf_2, g)} = a\delta_{(f_1, g)} + b\delta_{(f_2, g)}$$

$$\delta_{(f, ag_1 + bg_2)} = a\delta_{(f, g_1)} + b\delta_{(f, g_2)}$$

But we know how to do this from class: we make a subspace Z of F which contains all the things that we want to be zero (i.e. all the relations that we want to hold)

$$Z = \text{span} \{ \delta_{(af_1 + bf_2, g)} - a\delta_{(f_1, g)} - b\delta_{(f_2, g)}, \delta_{(f, ag_1 + bg_2)} - a\delta_{(f, g_1)} - b\delta_{(f, g_2)} : a, b \in k, f, f_1, f_2 \in V, g, g_1, g_2 \in W \}$$

and then define

$$V \otimes W = F/Z$$

2.4. **Why this does exactly what we want.** Write

$$v \otimes w = \delta_{(v, w)} + Z$$

Then the fact that

$$\delta_{(af_1 + bf_2, g)} - a\delta_{(f_1, g)} - b\delta_{(f_2, g)} \in Z$$

means that

$$\delta_{(af_1 + bf_2, g)} + Z = a\delta_{(f_1, g)} + b\delta_{(f_2, g)} + Z$$

or in other words that

$$\delta_{(af_1 + bf_2, g)} + Z = a\delta_{(f_1, g)} + b\delta_{(f_2, g)} + Z$$

(2) $$(af_1 + bf_2) \otimes g = a(f_1 \otimes g) + b(f_2 \otimes g).$$

Similarly,

(3) $$f \otimes (ag_1 + bg_2) = a(f \otimes g_1) + b(f \otimes g_2).$$
2.5. A basis for the tensor product. At the end of class, I claimed that if \(\{x_1, \ldots, x_n\} \) is a basis for \(V \) and \(\{y_1, \ldots, y_m\} \) is a basis for \(W \) then
\[
B = \{ x_i \otimes y_j : 1 \leq i \leq n, 1 \leq j \leq m \}
\]
is a basis for \(V \otimes W \). To get some practice working with tensor products, let us first see why the set \(B \) spans \(V \otimes W \). We need to take an arbitrary element of \(V \otimes W \) and write it as a linear combination of elements of \(B \). But, since \(V \otimes W = F/Z \), we know that anything in \(V \otimes W \) is of the form
\[
\alpha_1 \delta_{(v_1, w_1)} + \ldots + \alpha_n \delta_{(v_n, w_n)} + Z.
\]
Put another way, anything in \(V \otimes W \) is of the form
\[
\alpha_1 v_1 \otimes w_1 + \ldots + \alpha_n v_n \otimes w_n
\]
But we can write\(^3\)
\[
v_i = b_i^\gamma x_\gamma \\
w_i = c_i^\epsilon y_\epsilon
\]
and so our element of \(V \otimes W \) is
\[
\alpha_1 (b_1^\gamma x_\gamma) \otimes (c_1^\epsilon y_\epsilon) + \ldots + \alpha_n (b_n^\gamma x_\gamma) \otimes (c_n^\epsilon y_\epsilon)
\]
Now we can apply equations (2) and (3) repeatedly to get
\[
\alpha_1 b_1^\gamma c_1^\epsilon (x_\gamma \otimes y_\epsilon) + \ldots + \alpha_n b_n^\gamma c_n^\epsilon (x_\gamma \otimes y_\epsilon)
\]
This is a linear combination of the \(x_i \otimes y_j \)'s, so we’re done.

In class on Friday, we will prove that the set \(B \) is LI.

\(^3\)Summation convention!