Last Name: __________________________
First Name: __________________________

Mathematics 21b
Second Midterm
April 26, 1999

Your Section (circle one):

<table>
<thead>
<tr>
<th>Melissa Liu</th>
<th>Bo Cui</th>
<th>Sasha Polishchuk</th>
<th>Andy Engelward</th>
<th>Robert Winters</th>
<th>Robert Winters</th>
<th>Ian Dowker</th>
<th>Yuhan Zha</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWF9</td>
<td>MWF 10</td>
<td>MWF 10</td>
<td>MWF 11</td>
<td>MWF 11</td>
<td>MWF 12</td>
<td>TuTh 10</td>
<td>TuTh 11:30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

No calculators are allowed.
Justify your answers carefully (except for question 1).
Except for question 1, no credit can be given for unsubstantiated answers.
1. For each of the following, circle T for true or F for false. No explanation is necessary.

(a) T F If S, T are $n \times n$ matrices such that $ST = TS$, and \vec{v} is an eigenvector of S, then $T\vec{v}$ is also an eigenvector of S.

(b) T F If $3 + i$ is an eigenvalue of a real 3×3 matrix A, then A is diagonalizable over \mathbb{C}.

(c) T F If A is a real 5×4 matrix, then AA^T is positive definite.

(d) T F If $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are row vectors, then

\[
\det \begin{bmatrix}
-\vec{v}_1 \\
-\vec{v}_2 \\
-\vec{v}_3 \\
-\vec{v}_4 \\
\end{bmatrix} = \det \begin{bmatrix}
-\vec{v}_2 \\
-\vec{v}_3 \\
-\vec{v}_4 \\
-\vec{v}_1 \\
\end{bmatrix}
\]

(e) T F A 2×2 real matrix A with $\det(A) < 0$ has 2 distinct real eigenvalues.

(f) T F If $\text{tr}(A) > 0$ then in the dynamical system $\frac{d}{dt} \vec{x} = A\vec{x}(t)$, $\vec{0}$ is not asymptotically stable.
2. a) Let

\[\vec{u} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} \]

Calculate the area of the parallelogram formed by \(\vec{u}\) and \(\vec{v}\) (i.e. two of its sides are equal to \(\vec{u}\) and \(\vec{v}\)).

b) Is the matrix

\[A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 & 11 \\ 0 & 0 & 0 & 12 & 13 \\ 0 & 0 & 0 & 0 & 14 \end{bmatrix} \]

diagonalizable over \(R\)? Briefly explain why or why not.
c) Find a matrix with eigenvalues equal to 2, 3, 5, 7.

d) Which of the following matrices A, B, C, D, E has characteristic polynomial
i) $\lambda^4 - 8\lambda^3 - 26\lambda^2 - 88\lambda + 121$?
 Answer:

ii) $\lambda^4 - 8\lambda^3 - 19\lambda^2 + 98\lambda - 72$?
 Answer:

For each polynomial there is exactly one correct answer.

\[
A = \begin{bmatrix}
 6 & 1 & 3 & 1 \\
 2 & -2 & 0 & -2 \\
-1 & 4 & 1 & 4 \\
 2 & 3 & 3 & 3
\end{bmatrix}, \quad
B = \begin{bmatrix}
 -5 & 1 & 2 & 6 \\
 8 & -4 & 4 & 1 \\
-2 & 5 & 4 & 0 \\
 3 & -7 & 6 & -3
\end{bmatrix}, \quad
C = \begin{bmatrix}
 0 & -11 & 0 & 0 \\
 1 & -4 & 2 & 1 \\
 0 & 0 & 11 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix},
\]

\[
D = \begin{bmatrix}
 11 & 0 & 0 & 0 \\
-6 & -1 & 0 & 0 \\
 8 & 2 & 11 & 0 \\
 1 & 3 & 4 & -1
\end{bmatrix}, \quad
E = \begin{bmatrix}
 9 & 4 & 5 & 9 \\
 0 & 2 & 2 & 7 \\
 0 & 0 & 1 & 3 \\
 0 & 0 & 0 & -4
\end{bmatrix}
\]
3. A is a real $n \times n$ matrix such that $A^2 = -I_n$.
 a) Show that A is invertible.

 b) Show that n must be even.

 c) Show that A has no real eigenvalues.
4. Consider a linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$. Suppose the matrix of T with respect to the basis
\[
\begin{bmatrix}
1 & 1 \\
2 & 3
\end{bmatrix}
\begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}
\]. Find the matrix of T with respect to the basis
\[
\begin{bmatrix}
1 & 1 \\
3 & 4
\end{bmatrix}
\].
5. Consider the quadratic form

\[q(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 + 2x_3x_1 \]

a) Find a symmetric matrix \(A \) such that

\[q(\vec{x}) = \vec{x}^T A \vec{x} \]

for all \(\vec{x} \) in \(\mathbb{R}^3 \).

b) Find all the eigenvalues of \(A \) and their algebraic and geometric multiplicities.
c) Is A positive definite? Briefly justify your answer.

d) Find an orthonormal eigenbasis for A.
6. Consider the dynamical system
\[
\frac{dx_1}{dt} = ax_1 - bx_2
\]
\[
\frac{dx_2}{dt} = bx_1 + ax_2
\]

a) Sketch a phase portrait in the case \(a = 1, b = -1\).

b) For each of the four phase portraits below, indicate (by circling the correct answer) whether the constants \(a\) and \(b\) are positive, negative, or zero.

\[
\begin{array}{cccc}
 a > 0 & b > 0 & a > 0 & b > 0 \\
 = 0 & = 0 & = 0 & = 0 \\
 < 0 & < 0 & < 0 & < 0
\end{array}
\]