Math 21b Midterm 1 Solutions - Fall 2001

1. (a) Simple calculation shows that

\[\text{rref}(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}. \]

Thus for \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) in the kernel of \(T \), we know \(x_1 = -x_3 \) and \(x_2 = 2x_3 \). Thus the kernel of \(T \) is spanned by \(\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \), and in fact this is a basis for the kernel since this spanning set is clearly linearly independent.

(b) The leading 1’s in \(\text{rref}(A) \) were in the first and second columns, so the first and second columns of \(A \) span the image of \(T \). These are clearly linearly independent (since one is not a multiple of the other), so they form a basis for the image of \(T \):

\[
\left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ -4 \\ 1 \end{bmatrix} \right\}.
\]

(c) \(\text{rank}(A) = \dim(\text{im}(A)) = 2 \).

2. (a) Linear: \(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \).

(b) Linear: \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \).

(c) Not linear because \(T(0) = 1 \) (not 0).

(d) Linear: \(\begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \).

3. (a) \(B \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = B^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \end{bmatrix} \).

(b) \((BA)^{-1} = A^{-1}B^{-1} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \).
4. (a) The set S is sketched on the axes below:

(b) S is not a subspace of the vector space \mathbb{R}^2 because it is not closed under addition. For example, $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$, and $\begin{bmatrix} 6 \\ -1 \end{bmatrix}$ does not satisfy either of the given equations, but $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ satisfies the first one and $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ satisfies the second one.

(c) S has three subsets that are subspaces of \mathbb{R}^2. They are

i. The vectors satisfying $2x - y = 0$.

ii. The vectors satisfying $3x + 5y = 0$.

iii. The origin.

5. (a) We want to find a and b such that $a \begin{bmatrix} -1 \\ 4 \end{bmatrix} + b \begin{bmatrix} -2 \\ 9 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$. Solving the system yields

$$a = -59 \text{ and } b = 26.$$ Thus $T(\begin{bmatrix} 7 \\ -2 \end{bmatrix}) = -59(t^2 - 3) + 26(t + 1) = -59t^2 + 26t + 203$.

(b) $3t^2 + 4t - 5 = 3(t^2 - 3) + 4(t + 1)$. Thus

$$\begin{bmatrix} a \\ b \end{bmatrix} = 3 \begin{bmatrix} -1 \\ 4 \end{bmatrix} + 4 \begin{bmatrix} -2 \\ 9 \end{bmatrix} = \begin{bmatrix} -11 \\ 48 \end{bmatrix}.$$

(c) The quadratic t^2 is not in the image of T because there is no linear combination of $t^2 - 3$ and $t + 1$ that equals t^2.

6. (a) The diagram given shows that $T(\vec{w})$ and $T(\vec{v})$ are linearly independent. And since $\text{dim}(\text{im}(T)) \leq 2$, the vectors $T(\vec{v})$ and $T(\vec{w})$ must form a basis for the image of T.

(b) Since T is linear, $T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = T(\vec{w}) - T(\vec{v})$.

(c) Again since T is linear, $T(\begin{bmatrix} 1 \\ 2 \end{bmatrix}) = T(\vec{v}) + T(\vec{w})$. This can be drawn on the axis provided by adding the two vectors to get a vector whose tip is at approximately $(8, 8)$ if we consider the grid marks to be the units.

7. The linear transformation T is from \mathbb{R}^2 to \mathbb{R}^2, so the matrix A, representing T, is a 2×2 matrix. Recall that $\det(A) = (\det(A^{-1}))^{-1}$. Since $A = A^{-1}$, this means $\det(A) = \pm 1$. If $\det(A) = 1$, then
\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = A^{-1}. \]

Thus we get that \(a = d, b = c = 0, \) and \(ad = 1. \) Therefore the only possibilities for \(A \) are \(\pm I_2. \) However, if \(\det(A) = -1, \) then \(A \) must have the form:

\[A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \]

where \(-a^2 - bc = -1. \) But notice that this equation has infinitely many solutions, since we can rewrite it as:

\[-bc = a^2 - 1 = (a - 1)(a + 1),\]

so any set of values \((a, b, c) = (a, 1 - a, 1 + a)\) will be valid. Thus any matrix of the form

\[A = \begin{bmatrix} a & 1 - a \\ 1 + a & -a \end{bmatrix} \]

is its own inverse. Thus there are infinitely many such matrices, and so infinitely many self-inverting linear transformations.

(Note: this does not characterize all matrices whose square is the identity, but it sufficiently shows that there are infinitely many.)