ASYMPTOTIC STABILITY COMPARISON OF DISCRETE AND CONTINUOUS SITUATION.

The trace and the determinant are independent of the basis, they can be computed fast, and are real if \(A \) is real. It is therefore convenient to determine the region in the \(tr - det \)-plane, where continuous or discrete dynamical systems are asymptotically stable. While the continuous dynamical system is related to a discrete system, it is important not to mix these two situations up.

Continuous dynamical system.

Stability of \(\ddot{x} = Ax \) \((x(t + 1) = e^{At}x(t)) \).

- Stability in \(det(A) > 0, tr(A) > 0 \) Stability if \(Re(\lambda_1) < 0, Re(\lambda_2) < 0 \).
- Stability in \(det(A) < 0, tr(A) > 0 \) Stability if \(|\lambda_1| < 1, |\lambda_2| < 1 \).

Discrete dynamical system.

Stability of \(x(t + 1) = Az \).

- Stability in \(\lambda_1 < 0, \lambda_2 < 0 \).
- \(i \times A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix} \).
- \(i \times A = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \).

PHASE-PORTRIATS. (In two dimensions we can plot the vector field, draw some trajectories)

- \(\lambda_1 > 0, \lambda_2 > 0 \)
- \(i \times A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \).
- \(i \times A = \begin{bmatrix} 0 & 0 \\ 0 & -3 \end{bmatrix} \).

The differential equations of the spinner.

\(x \) is the angle and \(y \) the height of the body. We put the coordinate system so that \(y = 0 \) is the point, where the body stays at rest if \(x = 0 \). We assume that if the spring is wound up with an angle \(x \), this produces an upwards force \(x \) and a momentum force \(-3x \). We furthermore assume that if the body is at position \(y \), then this produces a momentum \(y \) onto the body and an upwards force \(y \).

The differential equations:

\[
\ddot{x} = -3x + y \\
\ddot{y} = -y + x
\]

Finding good coordinates \(w = S^{-1}x \) is obtained by getting the eigenvalues and eigenvectors of \(A \):

\[
\lambda_1 = -2 - \sqrt{2}, \lambda_2 = -2 + \sqrt{2}
\]

\[
v_1 = \begin{bmatrix} -1 - \sqrt{2} \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 + \sqrt{2} \\ 1 \end{bmatrix}
\]

so that \(S = \begin{bmatrix} -1 - \sqrt{2} & -1 + \sqrt{2} \\ 1 & 1 \end{bmatrix} \).

Solve the system \(a = \lambda_1 a, b = \lambda_2 b \) in the good coordinates:

\[
a(t) = A \cos(\omega_1 t) + B \sin(\omega_1 t), \omega_1 = \sqrt{-\lambda_1} \\
b(t) = C \cos(\omega_2 t) + D \sin(\omega_2 t), \omega_2 = \sqrt{-\lambda_2}
\]

The solution in the original coordinates:

\[
S \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}.
\]

At \(t = 0 \) we know \(x(0), y(0), \dot{x}(0), \dot{y}(0) \). This fixes the constants in \(x(t) = A_1 \cos(\omega_1 t) + B_1 \sin(\omega_1 t) + A_2 \cos(\omega_2 t) + B_2 \sin(\omega_2 t) \). The curve \((x(t), y(t)) \) traces a Lyssajoux curve:

ASYMPTOTIC STABILITY \(x = Ax \) is asymptotically stable if and only if all eigenvalues have negative real part \(Re(\lambda) < 0 \).

ASYMPTOTIC STABILITY IN 2D A linear system \(x = Ax \) in the 2D plane is asymptotically stable if and only if \(det(A) > 0 \) and \(tr(A) < 0 \).

Proof: If both eigenvalues \(\lambda_1, \lambda_2 \) are real, then both being negative is equivalent to \(\lambda_1 \lambda_2 = det(A) > 0 \) and \(tr(A) = \lambda_1 + \lambda_2 < 0 \). If \(\lambda_1 = a + ib, \lambda_2 = a - ib \), then a negative \(i \) is equivalent to \(\lambda_1 + \lambda_2 = 2a < 0 \) and \(\lambda_1 \lambda_2 = a^2 + b^2 > 0 \).