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SUMMARY. For linear systems ẋ = Ax, the eigenvalues of A determine the behavior completely. For nonlinear
systems explicit formulas for solutions are no more available in general. It even also happen that orbits go go
off to infinity in finite time like in ẋ = x2 with solution x(t) = −1/(t− x(0)). With x(0) = 1 it reaches infinity
at time t = 1. Linearity is often too crude. The exponential growth ẋ = ax of a bacteria colony for example is
slowed down due to lack of food and the logistic model ẋ = ax(1− x/M) would be more accurate, where M
is the population size for which bacteria starve so much that the growth has stopped: x(t) = M , then ẋ(t) = 0.
Nonlinear systems can be investigated with qualitative methods. In 2 dimensions ẋ = f(x, y), ẏ = g(x, y),
where chaos does not happen, the analysis of equilibrium points and linear approximation at those
points in general allows to understand the system. Also in higher dimensions, where ODE’s can have chaotic
solutions, the analysis of equilibrium points and linear approximation at those points is a place, where linear
algebra becomes useful.

EQUILIBRIUM POINTS. A point x0 is called an equilibrium point of ẋ = f(x) if f(x0) = 0. If x(0) = x0

then x(t) = x0 for all times. The system ẋ = x(6−2x−y), ẏ = y(4−x−y) for example has the four equilibrium
points (0, 0), (3, 0), (0, 4), (2, 2).

JACOBIAN MATRIX. If x0 is an equilibrium point for ẋ = f(x) then [A]ij = ∂
∂xj

fi(x) is called the Jacobian

at x0. For two dimensional systems

ẋ = f(x, y)

ẏ = g(x, y)
this is the 2× 2 matrix A=

[
∂f
∂x (x, y) ∂f

∂y (x, y)
∂g
∂x (x, y) ∂g

∂y (x, y)

]
.

The linear ODE ẏ = Ay with y = x − x0 approximates the nonlinear system well near the equilibrium point.
The Jacobian is the linear approximation of F = (f, g) near x0.

VECTOR FIELD. In two dimensions, we can draw the vector field by hand: attaching a vector (f(x, y), g(x, y))
at each point (x, y). To find the equilibrium points, it helps to draw the nullclines {f(x, y) = 0}, {g(x, y) = 0}.
The equilibrium points are located on intersections of nullclines. The eigenvalues of the Jacobeans at equilibrium
points allow to draw the vector field near equilibrium points. This information is sometimes enough to draw
the vector field by hand.

MURRAY SYSTEM (see handout) ẋ = x(6− 2x− y), ẏ = y(4−x− y) has the nullclines x = 0, y = 0, 2x+ y =
6, x + y = 5. There are 4 equilibrium points (0, 0), (3, 0), (0, 4), (2, 2). The Jacobian matrix of the system at

the point (x0, y0) is

[
6− 4x0 − y0 −x0

−y0 4− x0 − 2y0

]
. Note that without interaction, the two systems would be

logistic systems ẋ = x(6− 2x), ẏ = y(4− y). The additional −xy is the competition.

Equilibrium Jacobean Eigenvalues Nature of equilibrium

(0,0)

[
6 0
0 4

]
λ1 = 6, λ2 = 4 Unstable source

(3,0)

[
−6 −3
0 1

]
λ1 = −6, λ2 = 1 Hyperbolic saddle

(0,4)

[
2 0
−4 −4

]
λ1 = 2, λ2 = −4 Hyperbolic saddle

(2,2)

[
−4 −2
−2 −2

]
λi = −3±

√
5 Stable sink

USING TECHNOLOGY (Example: Mathematica). Plot the vector field:
Needs["Graphics‘PlotField‘"]

f[x_,y_]:={x(6-2x-y),y(5-x-y)};PlotVectorField[f[x,y],{x,0,4},{y,0,4}]

Find the equilibrium solutions:
Solve[{x(6-2x-y)==0,y(5-x-y)==0},{x,y}]

Find the Jacobian and its eigenvalues at (2, 2):
A[{x_,y_}]:={{6-4x,-x},{-y,5-x-2y}};Eigenvalues[A[{2,2}]]

Plotting an orbit:
S[u_,v_]:=NDSolve[{x’[t]==x[t](6-2x[t]-y[t]),y’[t]==y[t](5-x[t]-y[t]),x[0]==u,y[0]==v},{x,y},{t,0,1}]

ParametricPlot[Evaluate[{x[t],y[t]}/.S[0.3,0.5]],{t,0,1},AspectRatio->1,AxesLabel->{"x[t]","y[t]"}]



VOLTERRA-LODKA SYSTEMS
are systems of the form

ẋ = 0.4x− 0.4xy

ẏ = −0.1y + 0.2xy

This example has equilibrium
points (0, 0) and (1/2, 1).

It describes for example a tuna
shark population. The tuna pop-
ulation x(t) becomes smaller with
more sharks. The shark population
grows with more tuna. Volterra ex-
plained so first the oscillation of fish
populations in the Mediterrian sea.

EXAMPLE: HAMILTONIAN SYS-
TEMS are systems of the form

ẋ = ∂yH(x, y)

ẏ = −∂xH(x, y)

where H is called the energy. Usu-
ally, x is the position and y the mo-
mentum.

THE PENDULUM: H(x, y) = y2/2−
cos(x).

ẋ = y

ẏ = − sin(x)

x is the angle between the pendulum
and y-axes, y is the angular velocity,
sin(x) is the potential.

(See homework). Hamiltonian systems preserve energy H(x, y) because d
dtH(x(t), y(t)) = ∂xH(x, y)ẋ +

∂yH(x, y)ẏ = ∂xH(x, y)∂yH(x, y)− ∂yH(x, y)∂xH(x, y) = 0. Orbits stay on level curves of H.

EXAMPLE: LIENHARD SYSTEMS
are differential equations of the form
ẍ + ẋF ′(x) + G′(x) = 0. With y =
ẋ+ F (x), G′(x) = g(x), this gives

ẋ = y − F (x)

ẏ = −g(x)

VAN DER POL EQUATION ẍ+(x2−
1)ẋ + x = 0 appears in electrical
engineering, biology or biochemistry.
Since F (x) = x3/3− x, g(x) = x.

ẋ = y − (x3/3− x)

ẏ = −x

Lienhard systems have limit cycles. A trajectory always ends up on that limit cycle. This is useful for
engineers, who need oscillators which are stable under changes of parameters. One knows: if g(x) > 0 for x > 0
and F has exactly three zeros 0, a,−a, F ′(0) < 0 and F ′(x) ≥ 0 for x > a and F (x)→∞ for x→∞, then the
corresponding Lienhard system has exactly one stable limit cycle.

CHAOS can occur for systems ẋ = f(x) in three dimensions. For example, ẍ = f(x, t) can be written with
(x, y, z) = (x, ẋ, t) as (ẋ, ẏ, ż) = (y, f(x, z), 1). The system ẍ = f(x, ẋ) becomes in the coordinates (x, ẋ) the
ODE ẋ = f(x) in four dimensions. The term chaos has no uniform definition, but usually means that one can
find a copy of a random number generator embedded inside the system. Chaos theory is more than 100 years
old. Basic insight had been obtained by Poincaré. During the last 30 years, the subject exploded to its own
branch of physics, partly due to the availability of computers.

ROESSLER SYSTEM

ẋ = −(y + z)

ẏ = x+ y/5

ż = 1/5 + xz − 5.7z

LORENTZ SYSTEM

ẋ = 10(y − x)

ẏ = −xz + 28x− y
ż = xy − 8z
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These two systems are examples, where one can observe strange attractors.

THE DUFFING SYSTEM
ẍ+ ẋ

10 − x+ x3 − 12 cos(t) = 0

ẋ = y

ẏ = −y/10− x+ x3 − 12 cos(z)

ż = 1

The Duffing system models a metal-
lic plate between magnets. Other
chaotic examples can be obtained
from mechanics like the driven
pendulum ẍ+ sin(x)− cos(t) = 0.


