THE PRINCIPLE OF MINIMAL FREE ENERGY. Assume that the probability that a system is in a state \(i\) is \(p_i\), and that the energy of the state \(i\) is \(E_i\). By a fundamental principle, nature tries to minimize the free energy \(F = -\sum p_i \log(p_i)\) when the energies \(E_i\) are fixed. The free energy is the difference of the entropy \(S(p) = -\sum p_i \log(p_i)\) and the energy \(E(p) = \sum p_i E_i\). The probability distribution \(p_i\) satisfying \(\sum p_i = 1\) minimizing the free energy is called the Gibbs distribution.

SOLUTION: \(\nabla f = (-1, -\log(p_1), \ldots, -1, -\log(p_n))\), \(\nabla g = (1, \ldots, 1)\). The Lagrange equations are \(-1 - \log(p_1) = \lambda p_1 + \ldots + p_n = 1\), from which we get \(p_i = e^{-\lambda}/(1 - e^{-\lambda})\). The last equation \(\sum p_i = 1\) fixes \(\lambda = -\log(1/e) = 1\). The distribution, where each event has the same probability is the distribution of maximal entropy.

REMARK. Maximal entropy means least information content. A dice which is fixed (asymmetric weight distribution for example) allows a cheating gambler to gain profit. Cheating through asymmetric weight distributions can be avoided by making the dice transparent.

THE PRINCIPLE OF MAXIMAL ENTROPY. Consider a dice showing \(i\) with probability \(p_i\), where \(i = 1, \ldots, 6\). The entropy of the probability distribution is defined as \(S(p) = -\sum p_i \log(p_i)\). Find the distribution \(p_i\) which maximizes entropy under the constraint \(\sum p_i = 1\).

SOLUTION: \(\nabla f = (-1 - \log(p_1), \ldots, -1 - \log(p_n))\), \(\nabla g = (1, \ldots, 1)\). The Lagrange equations are \(-1 - \log(p_i) = \lambda p_i + \ldots + p_n = 1\), from which we get \(p_i = e^{-\lambda}/(1 - e^{-\lambda})\). The last equation \(\sum p_i = 1\) fixes \(\lambda = -\log(1/e) = 1\). The distribution, where each event has the same probability is the distribution of maximal entropy.

REMARK. Maximal entropy means least information content. A dice which is fixed (asymmetric weight distribution for example) allows a cheating gambler to gain profit. Cheating through asymmetric weight distributions can be avoided by making the dice transparent.

EXAMPLE. To find the shortest distance from the origin to the curve \(x^2 + 3y^2 = 1\), we minimize \(f(x,y) = x^2 + y^2\) with constraint \(g(x,y) = x^2 + 3y^2 = 1\). The Lagrange equations are \(2x = 2\lambda x\), \(6y = 2\lambda y\), \(x^2 + 3y^2 = 1\). From the constraint equation, we obtain \(y = \sqrt{1/3}\) So, we have the solutions \((0, \pm \sqrt{1/3})\) and \((1, 0), (-1, 0)\). To see which is the minimum, just evaluate \(f\) on each of the points. We see that \((0, \pm \sqrt{1/3})\) are the minimum.

HIGHER DIMENSIONS. The above constrained extremal problem works also in more dimensions. For example, if \(f(x,y,z)\) is a function of three variables and \(g(x,y,z) = c\) is a surface, we solve the system of 4 equations

\[
\nabla f = (2x, 2y, 2z) \nabla g = (6x^2, 6y, 6y^2) \]

\(x^2 + 3y^2 = 1\) to find the 4 unknowns \((x, y, z, \lambda)\). In \(n\) dimensions, we have \(n+1\) equations and \(n+1\) unknowns \((x_0, \ldots, x_n, \lambda)\).

THE PRINCIPLE OF MAXIMAL ENTROPY. Consider a dice showing \(x, y, z\) with probability \(p_{xyz}\), where \(x, y, z = 1, \ldots, 6\). The entropy of the probability distribution is defined as \(S(p) = -\sum p_{xyz} \log(p_{xyz})\). Find the distribution \(p_{xyz}\) which maximizes entropy under the constraint \(\sum p_{xyz} = 1\).

SOLUTION: \(\nabla f = (3(2x+y), 3x, 3y, 3z) \nabla g = (6x^2, 6y, 6y^2) \)

\(x^2 + 3y^2 = 1\) so that \(\sum p_{xy} = 1\) giving \(\sum p_{xy} = 1\). The Gibbs distribution is \(p_{xy} = \exp(-E)\) where \(C = \exp(-\lambda)\). The additional equation \(\sum p_{xy} = 1\) gives \(\sum p_{xy} = 1\) so that \(C = 1/\sum p_{xy}\). The Gibbs distribution is \(p_{xy} = \exp(-E)\) \(\sum p_{xy} = 1\).

EXAMPLE. The Gaussian distribution (normal distribution) is a probability distribution that is maximized by the intersection \(x = 0\) and \(y = 0\). It is also an example of a distribution that is symmetric under the constraint \(\sum p_{xy} = 1\). The Gaussian distribution is \(p_{xy} = \exp(-E)\) \(\sum p_{xy} = 1\).

SOURCE: (a) The Book of the Dead, p. 2. (b) The California Heat Engine, p. 3.

REMARK. Other factors can influence the shape also. For example, the can has to withstand pressure forces up to 100 psi.