2D INTEGRALS

1D INTEGRATION IN 100 WORDS. If \(f(x) \) is a continuous function then \(\int_a^b f(x) \, dx \) can be defined as a limit of the Riemann sum \(\sum_{x_k \in [a,b]} f(x_k) \) for \(n \to \infty \) with \(x_k = k/n \). This integral divided by \(|b-a| \) is the average of \(f \) on \([a,b]\). The integral \(\int_a^b f(x) \, dx \) can be interpreted as an area under the graph of \(f \), which can be negative too. If \(f(x) = 1 \), the integral is the length of the interval. The function \(F(x) = \int_a^x f(y) \, dy \) is called an anti-derivative of \(f \). The fundamental theorem of calculus states \(F'(x) = f(x) \). Unlike the derivative, anti-derivatives cannot always be expressed in terms of known functions. An example is: \(f(x) = \cos^2(x) \). The anti-derivative is \(\frac{x}{2} \) – \(\sin(2x)/4 \).

AVERAGES=MEAN. www.worldclimate.com gives the following data for the average monthly rainfall (in mm) for Cambridge, MA, USA (42.38 North 71.11 West.18m Height).

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.3</td>
<td>88.6</td>
<td>81.4</td>
<td>67.0</td>
<td>129</td>
<td>124</td>
<td>121</td>
<td>107</td>
<td>93</td>
<td>88.6</td>
<td>93.9</td>
<td>101</td>
</tr>
<tr>
<td>80.6</td>
<td>83.4</td>
<td>71.4</td>
<td>66.8</td>
<td>102</td>
<td>94.9</td>
<td>91.4</td>
<td>83.8</td>
<td>83</td>
<td>71.4</td>
<td>75.5</td>
<td>81.4</td>
</tr>
<tr>
<td>50.0</td>
<td>52.4</td>
<td>49.3</td>
<td>47.0</td>
<td>88</td>
<td>84.1</td>
<td>78.9</td>
<td>73</td>
<td>67</td>
<td>57.4</td>
<td>61.4</td>
<td>82.8</td>
</tr>
</tbody>
</table>

The average 860.3/12 = 71.7 is a Riemann sum integral.

2D INTEGRATION. If \(f(x,y) \) is a continuous function of two variables on a region \(R \), the integral \(\int_R f(x,y) \, dy \, dx \) can be defined as the limit \(\frac{1}{n^2} \sum_{i,j} f(x_{ij}, y_{ij}) \) for \(n \to \infty \) as \(n \times n \) goes to infinity. If \(f(x,y) = 1 \), then the integral is the area of the region \(R \). The integral divided by the area of \(R \) is the average value of \(f \) on \(R \). For many regions, the integral can be calculated as a double integral \(\int_R \int f(x,y) \, dy \, dx \). In general, the region must be split into pieces, then integrated separately.

One can interpret \(\int_R f(x,y) \, dy \, dx \) as the volume of solid below the graph of \(f \) and above \(R \) in the \(x \)-\(y \) plane. (As in 1D integration, the volume of the solid below the \(x-y \) plane is counted negatively).

EXAMPLE. Calculate \(\int_R f(x,y) \, dy \, dx \), where \(f(x,y) = 4x^2y^3 \) and where \(R \) is the rectangle \([0,1] \times [0,2] \).

\[
\int_0^1 \left(\int_0^2 4x^2y^3 \, dx \right) \, dy = \int_0^2 \left(\int_0^1 x^2(16 - 0) \, dx \right) = 16x^3/3|_0^1 = \frac{16}{3}.
\]

FUBIN’S THEOREM. \(\int_a^b \int_c^d f(x,y) \, dy \, dx = \int_c^d \int_a^b f(x,y) \, dx \, dy \).

TYPES OF REGIONS.

- type I regions
- type II regions

EXAMPLE. Let \(R \) be the triangle \(1 \geq x \geq 0, 0 \geq y \geq 0, y \leq x \). Calculate \(\int_R e^{-x^2} \, dy \, dx \).

QUANTUM MECHANICS. In quantum mechanics, the motion of a particle (like an electron) in the plane is determined by a function \(u(x,y) \), the wave function. Unlike in classical mechanics, the position of a particle is given in a probabilistic way only. If \(R \) is a region and \(u \) is normalized so that \(\int_R |u(x,y)|^2 \, dx \, dy \leq 1 \), then \(\int_R |u(x,y)|^2 \, dx \, dy \) is the probability that the particle is in \(R \).

EXAMPLE. Unlike a classical particle, a quantum particle in a box \([0, \pi] \times [0, \pi] \) can have a discrete set of energies only. This is the reason for the name “quantum”. If \(-(u_{xx} + u_{yy}) = \lambda u \), then a particle of mass \(m \) has the energy \(E = \frac{\lambda^2}{2m} \). A function \(u(x,y) = \sin(kx) \sin(ny) \) represents a particle of energy \((k^2 + n^2)\hbar^2/2m \). Let us assume \(\lambda = 2 \) and \(n = 3 \) from now on. Our aim is to find the probability that the particle with energy 18k^2/2m is in the middle 9th cell \(\mathbb{R} \times \mathbb{R} \) of the box.

SOLUTION. We first have to normalize \(u(x,y) = \sin(2x) \sin^2(3y) \), so that the average over the whole square is 1:

\[
A = \int_0^\pi \int_0^\pi \sin^2(2x) \sin^2(3y) \, dx \, dy.
\]

To calculate this integral, we first determine the inner integral

\[
\int_0^\pi \sin^2(2x) \sin^2(3y) \, dx = \frac{1}{8} \sin^2(3y) \left(\frac{1}{2} \sin^2(2x) + \sin^2(4x) \right),
\]

so that the probability amplitude function is \(f(x,y) = \frac{1}{8} \sin^2(2x) \sin^2(3y) \).

The probability that the particle is in \(R \) is slightly smaller than 1/9:

\[
\frac{1}{A} \int_R f(x,y) \, dy \, dx = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi/3} \frac{1}{8} \sin^2(2x) \sin^2(3y) \, dx \, dy
\]

\[
= \frac{1}{4\pi^2} \frac{(4x - \sin(4x))/8(2x^3/3)(6x - \sin(6x))/12x^3/3}{1} = 19/9 - 1/(4\sqrt{3})
\]

The probability is slightly smaller than 1/9.

WHERE DO DOUBLE INTEGRALS OCCUR?

- compute areas.
- compute averages. Examples: average rain fall or average population in some area.
- probabilities. Expectation of random variables.
- quantum mechanics: probability of particle being in a region. Find moment of inertia \(\int_R (x^2+y^2)^2 \rho(x,y) \, dx \, dy \).
- find center of mass \((\int_R x\rho(x,y) \, dx \, dy)/M, \int_R y\rho(x,y) \, dx \, dy)/M \), with \(M = \int_R \rho \, dx \, dy \).
- compute some 1D integrals.

TRIPLE INTEGRALS are defined similarly and covered in detail later. The area under a graph of \(f(x,y) \) can be written as a triple integral. Fubini’s theorem generalizes \(\int f(x,y) \, dx \, dy \) to be: \(\int \int f(x,y,z) \, dx \, dy \, dz \).