PARTIAL DIFFERENTIAL EQUATIONS

O. Knill, Math 21a

FUNCTIONS OF TWO VARIABLES. We consider functions \(f(x, t) \) in two variables. Viewing the variable \(t \) as time, we can look at the function \(x \mapsto f(x, t) \) of one variable evolving in time. The describing equation is a partial differential equation (PDE). It is a differential equation which involves the derivatives with respect to both space \(x \) and time \(t \). The function \(f(x, t) \) could denote the temperature of a stick or the height of a water wave at position \(x \) and time \(t \).

PARTIAL DERIVATIVES. We write \(f_x(x, t) \) and \(f_t(x, t) \) for the partial derivatives with respect to \(x \) or \(t \). The notation \(f_{xx}(x, t) \) means that we differentiate twice with respect to \(x \).

Example: for \(f(x, t) = \cos(x + 4t^2) \), we have

- \(f_x(x, t) = -\sin(x + 4t^2) \)
- \(f_t(x, t) = -8t \sin(x + 4t^2) \)
- \(f_{xx}(x, t) = -\cos(x + 4t^2) \)

One also uses the notation \(\frac{\partial f}{\partial x} \) for the partial derivative with respect to \(x \). Tired of all the "partial derivative signs", we always write \(f_x(x, y) \) or \(f_t(x, y) \) in this handbook. This is an official abbreviation in the scientific literature.

PARTIAL DIFFERENTIAL EQUATIONS. A partial differential equation is an equation for an unknown function \(f(x, t) \) in which at least two different partial derivatives occur.

- \(f_x(x, t) + f_t(x, t) = 0 \) with \(f(x, 0) = \sin(x) \) has a solution \(f(x, t) = \sin(x - t) \).
- \(f_x(x, t) = f(x, t) \) has the solution \(f(x, 0)e^t \). The equation is not a PDE. Why not?
- \(f_x(x, t) - f_t(x, t) = 0 \) has a solution \(f(x, t) = \sin(x - t) + \sin(x + t) \). Check it!

EXAMPLE: THE WAVE EQUATION. A wave can be modeled by the wave equation

\[f_{tt}(x, t) + c^2 f_{xx}(x, t) = 0 \]

where \(c \) is a constant, the speed of the waves.

EXAMPLE: THE HEAT EQUATION. The temperature distribution \(f(x, t) \) in a metal wire satisfies the heat equation

\[f_t(x, t) = \mu f_{xx}(x, t) \]

This PDE tells us the rate of change of the temperature at the point \(x \) is proportional to the second space derivative of \(f(x, t) \) at \(x \). A function \(f(x) = f(0, 0) \) determines an initial temperature distribution. The constant \(\mu \) depends on the heat conductivity of the material. Metals for example conduct heat well and have a large \(\mu \).

VISUALIZATION. We can plot the graph of the function \(f(x, t) \) or the temperature distribution for different times \(t \).

\[f(x, 0) \quad f(x, 1) \quad f(x, 2) \quad f(x, 3) \quad f(x, 4) \]

EXAMPLE: THE BURGERS EQUATION. The Burgers equation

\[f_t(x, t) + f(x, t)f_x(x, t) = \mu f_{xx}(x, t) \]

This partial differential equation can have shocks: the waves break. You see that at the beach. With positive \(\mu \), one can give explicit traveling waves \(f(t, x) = (1 + e^{2(x-ct)/4\mu})^{-1} \). Waves \(f(t, x) = \frac{1}{1 + e^{2(x-ct)/4\mu}} \) become discontinuous at \(t = 1 \).

VISUALIZATION. Again we can plot the wave functions \(f(x, t) \) for fixed times \(t \).

\[f(x, 0) \quad f(x, 25) \quad f(x, 5) \quad f(x, 75) \quad f(x, 0.99) \]

TO THE DERIVATION OF THE HEAT EQUATION. The temperature \(f(x, t) \) is proportional to the kinetic energy at the position \(x \). Divide the stick into \(n \) adjacent cells and assume that in each step, a fraction of the particles moves randomly to the right or to the left. If \(f_k(t) \) is the energy of particles in cell \(k \) at time \(t \), then the energy of particles at time \(t + 1 \) is proportional to \(f_k(t) \) plus \(f_{k-1}(t) - f_k(t) \) to the right and \(f_k(t) - f_{k+1}(t) \) to the left. This is a discrete version of the second derivative because \(dx^2 f_{xx}(x, t) \approx (f(x+dx, t) - 2f(x, t) + f(x-dx, t)) \).

TO THE DERIVATION OF THE WAVE EQUATION. A wave can be modeled by \(n \) particles linked by springs. Assume that the water particles move up and down only. If \(f_i(t) \) is the height of the particles, then the right particle pulls with a force \(f_{i+1} - f_i \) and the left particle with a force \(f_{i-1} - f_i \). Again, \(f_{i-1}(t) - 2f_i(t) + f_{i+1}(t) \) is a discrete version of the second derivative \(f_{xx} \). By Newtons law, the acceleration \(f_{tt}(t, x) \) at position \(x \) is proportional to \(f_{xx} \).

TO THE DERIVATION OF BURGERS EQUATION. Assume that \(\mu = 0 \) for a moment. If the wave \(f \) has height close to \(c \), we see that \(f(x, t) + cf_t(x, t) = 0 \) which has the solution \(f(x, t) = f(x - ct, 0) \). The waves travel forward with a speed which depends on the height of the wave. Higher waves travel faster. The additional term \(\mu f_{xx} \) plays the same role as in the heat equation: the potential energy, which is proportional to the height of the wave, dissipates into the neighborhood.

VISUALIZATION. We can plot the wave height \(f(x, t) \) as a function of \(x \) for different but fixed times \(t \).

\[f(x, 0) \quad f(x, 1) \quad f(x, 2) \quad f(x, 3) \quad f(x, 4) \]