PARTIAL DIFFERENTIAL EQUATIONS

O. Knill, Math 21a, Fall 2005

FUNCTIONS OF TWO VARIABLES. We consider functions \(f(x,t) \) in two variables. Thinking about the variable \(t \) as time, we can think of the functions of one variables \(x \rightarrow f(x,t) \) as they evolve in time. The describing equation will now be a partial differential equation (PDE), a differential equation which involves the derivatives with respect to both space \(x \) and time \(t \). The function \(f(x,t) \) could denote the temperature of a stick or the height of a water wave at position \(x \) and time \(t \).

PARTIAL DERIVATIVES. We write \(f_x(x,t) \) and \(f_t(x,t) \) for the partial derivatives with respect to \(x \) or \(t \). The notation \(f_{xx}(x,t) \) means that we differentiate twice with respect to \(x \).

Example: for \(f(x,t) = \cos(x+4t^2) \), we have
- \(f_x(x,t) = -\sin(x+4t^2) \)
- \(f_t(x,t) = -8t\sin(x+4t^2) \)
- \(f_{xx}(x,t) = -\cos(x+4t^2) \)

One also uses the notation \(\frac{\partial f(x,t)}{\partial x} \) for the partial derivative with respect to \(x \). Tired of all the "partial derivative notation"? We usually write \(f_t(x,y) \) or \(f_x(x,y) \) in this handout. This is an official abbreviation in the scientific literature.

PARTIAL DIFFERENTIAL EQUATIONS. A partial differential equation is an equation for an unknown function \(f(x,t) \) in which at least two different partial derivatives occur.

- \(f_t(x,t) + f_{xx}(x,t) = 0 \) with \(f(x,0) = \sin(x) \) has a solution \(f(x,t) = \sin(x-t) \).
- \(f_t(x,t) = f(x,t) \) has the solution \(f(x,0)e^t \). The equation is not a PDE. Why not?
- \(f_{xx}(x,t) = f_t(x,t) = 0 \) has a solution \(f(x,t) = \sin(x-t) + \sin(x+t) \). Check it!

EXAMPLE: THE HEAT EQUATION. The temperature distribution \(f(x,t) \) in a metal wire satisfies the heat equation

\[
f_t(x,t) = \mu f_{xx}(x,t)
\]

This PDE tells that the rate of change of the temperature at the point \(x \) is proportional to the second space derivative of \(f(x,t) \) at \(x \). A function \(f(x) = f(0,0) \) defines an initial temperature distribution. The constant \(\mu \) depends on the heat conductivity of the material. Metals for example conduct heat well and have a large \(\mu \).

VISUALIZATION. We can plot the graph of the function \(f(x,t) \) or plot the temperature distribution for different times \(t \).

EXAMPLE: THE WAVE EQUATION. The height of a wave \(f(x,t) \) at time \(t \) and position \(x \) satisfies the wave equation

\[
f_{tt}(x,t) = c^2 f_{xx}(x,t)
\]

where \(c \) is a constant, the speed of the waves.

VISUALIZATION. We can plot the wave height \(f(x,t) \) as a function of \(x \) for different but fixed times \(t \).

EXAMPLE: THE BURGERS EQUATION. If waves approach the shore, their dynamics changes. Low amplitude waves slow down and high altitude waves move faster. Additionally, waves start to dissipate and lose energy. A model is the Burgers equation

\[
f_t(x,t) + f(x,t)f_x(x,t) = \mu f_{xx}(x,t),
\]

This partial differential equation can have shocks: the waves break. You see that at the beach. With positive \(\mu \), one can give explicit traveling waves \(f(t,x) = (1 + e^{-t/4\nu})^{-1} \). Waves \(f(t,x) = \frac{\sqrt{\nu t}}{1 + \sqrt{\nu t}} e^{-t/4\nu} \) become discontinuous at \(t = 1 \).

VISUALIZATION. Again we can plot the wave functions \(f(x,t) \) for fixed times \(t \).

TO THE DERIVATION OF THE HEAT EQUATION. The temperature \(f(x,t) \) is proportional to the kinetic energy at \(x \). Divide the stick into \(n \) adjacent cells and assume that in each time step, a fraction of the particles moves randomly to the right or to the left. If \(f_k(t) \) is the energy of particles in cell \(k \) at time \(t \), then the energy of particles at time \(t + 1 \) is proportional to the sum of \(f_{k+1}(t) - f_k(t) \) and \(f_{k-1}(t) - f_k(t) \) which is \((f_{k+1}(t) - 2f_k(t) + f_{k-1}(t)) \). This is a discrete version of the second derivative because \(\frac{d^2}{dx^2} f(x,t) \approx (f(x+dx,t) - 2f(x,t) + f(x-dx,t)) \).

TO THE DERIVATION OF THE WAVE EQUATION. A wave can be modeled by \(n \) particles linked by springs. Assume that the water particles move up and down only. If \(f_i(t) \) is the height of the particles, then the right particle pulls with a force \(f_{i+1} - f_i \), the left particle with a force \(f_{i-1} - f_i \). Again, \((f_{i-1}(t) - 2f_i(t) + f_{i+1}(t)) \) is a discrete version of the second derivative \(f_{xx} \). By Newton’s law, the acceleration \(f_t(t,x) \) at position \(x \) is proportional to \(f_{xx} \).

TO THE DERIVATION OF BURGERS EQUATION. Assume \(\mu = 0 \) for a moment. If the wave \(f \) has height close to \(c \), we see that \(f_t(x,t) + cf_x(x,t) \) which has the solution \(f(x,t) = f(x-ct,0) \). The waves travel forward with a speed which depends on the height of the wave. Higher waves travel faster. The additional term \(\mu f_{xx} \) plays the same role as in the heat equation. The potential energy (which is proportional to the height of the wave) dissipates into the neighborhood.