Math 21a Hourly 2 Answers

1. a) \(\nabla f = (3, 4) \).

 b) The tangent plane is given by \(z - 3x - 4y = -5 \).

 c) Using the linear approximation, \(f(1.02, 2.05) = f(1, 2) + \nabla f|_{(1,2)} \cdot (.02, .05) = 6.26 \).

2. The stationary points occur at \((e^{-a}, e^{-b}, e^{-c})/(e^{-a} + e^{-b} + e^{-c})\).

3. 8/3.

4. a) The stationary points are \((0, 1), (0, -1), (1, 1), (-1, 1), (-1, -1)\).

 b) The local maximum is \((0, -1)\). The local minima are \((1, 1), (-1, 1)\). The remaining three are saddles.

 c) If the level set is tangent to the y axis, then \(\nabla f \) is orthogonal to \((0, 1)\) and so \(f_y = 0 \).

 This occurs where \(y = \pm 1 \). Where \(y = 1 \), \(f = x^4 - 2x^2 - 6 \) and so \(f = 2 \) if \(x = \pm 2 \).

 Where \(y = -1 \), \(f = x^4 - 2x^2 + 6 \) and so \(f \) is not equal to 2 for any value of \(x \). Thus, the points are \((2, 1)\) and \((-2, 1)\).

5. Change the order of integration to write this integral as \(\int_0^{\pi/2} \left(\int_{\sin(y)}^1 dx \right) dy = \pi/2 - 1 \).

6. Let \(z \) denote height, \(x \) denote length and \(y \) denote width. The you are asked to minimize the function \(f(x, y, z) = 50x + 20 (xz + yz) \) where \(x, y \) and \(z \) are constrained by the requirement \(xy z = 20,000,000 \). The minimum has \(z = 500 \) centimeters and \(x = y = 200 \) centimeters.