Welcome to Math 1b
Calculus, Series, and
Differential Equations

Thomas W. Judson (Course Head)
Spring 2006
About Math 1b
About Math 1b

* Speaking the language of modern mathematics requires fluency in infinite series, integration, and differential equations.
About Math 1b

* Speaking the language of modern mathematics requires fluency in infinite series, integration, and differential equations.
* We will learn to model practical situations using integrals and differential equations.
About Math 1b

* Speaking the language of modern mathematics requires fluency in infinite series, integration, and differential equations.
* We will learn to model practical situations using integrals and differential equations.
* We will learn how to represent interesting functions using series and find qualitative, numerical, and analytic ways of studying differential equations.
About Math 1b

* Speaking the language of modern mathematics requires fluency in infinite series, integration, and differential equations.
* We will learn to model practical situations using integrals and differential equations.
* We will learn how to represent interesting functions using series and find qualitative, numerical, and analytic ways of studying differential equations.
* We will develop both conceptual understanding and the ability to apply it.
Learning Objectives
Learning Objectives

- Integration and Applications of the Definite Integral—
 Techniques of integration, numerical integration,
 areas, volumes, arc length, applications to the natural
 sciences and economics.
Learning Objectives

* Integration and Applications of the Definite Integral—Techniques of integration, numerical integration, areas, volumes, arc length, applications to the natural sciences and economics.
* Infinite Sequences and Series—Sequences, series, testing for convergence, power series, and Taylor series.
Learning Objectives

* Integration and Applications of the Definite Integral—
 Techniques of integration, numerical integration, areas, volumes, arc length, applications to the natural sciences and economics.

* Infinite Sequences and Series—Sequences, series, testing for convergence, power series, and Taylor series.

* Differential Equations—Modeling, differential equations from a numerical, an analytical, and a geometrical approach, systems of differential equations.
The Textbook

Calculators
Calculators

* Any serviceable graphing calculator
Calculators

* Any serviceable graphing calculator

* If you plan to purchase a graphing calculator, we recommend the TI-84, TI-86, or TI-89.
Calculators

* Any serviceable graphing calculator
* If you plan to purchase a graphing calculator, we recommend at TI-84, TI-86, or TI-89
* Calculators are allowed on homework but not on exams
Techniques of Integration

- \(\int u \, dv = uv - \int v \, du \)
- \(\int \sin^2 \theta \, d\theta \)
- \(\int \frac{1}{x\sqrt{4x^2 - 9}} \, dx \)
- \(\int \frac{5}{(2x + 1)(x - 2)} \, dx \)
Applications of Integration

* How much work is done when pumping out all of the full contained in cylindrical tank?
Sequences and Series

Computing π

\[
\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
\]

Representing Functions with Power Series

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\]
Differential Equations

Predator-Prey Systems

\[\frac{dx}{dt} = \alpha x - \beta xy \]
\[\frac{dy}{dt} = -\gamma y + \delta xy \]
Prerequisites for Math 1b
Prerequisites for Math 1b

* A satisfactory score on the Math Placement Exam
Prerequisites for Math 1b

* A satisfactory score on the Math Placement Exam
* Math 1a
Prerequisites for Math 1b

- A satisfactory score on the Math Placement Exam
- Math 1a
- Math Xa and Xb
To Get a Second Opinion
To Get a Second Opinion

* If you still need advice about which math course to take, see a math advisor
To Get a Second Opinion

* If you still need advice about which math course to take, see a math advisor

* http://abel.math.harvard.edu/sectioning/index.html
To Get a Second Opinion

* If you still need advice about which math course to take, see a math advisor
* http://abel.math.harvard.edu/sectioning/index.html
* The Online Placement Exam
Sectioning
Sectioning

* Math 1b is taught in small sections
Sectioning

* Math 1b is taught in small sections
* You must section by 12:00 PM on Thursday, February 2
Sectioning

- Math 1b is taught in small sections
- You must section by 12:00 PM on Thursday, February 2
- Sectioning directions can be found at http://abel.math.harvard.edu/sectioning/index.html
<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Techniques of Integration Exam</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm I</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm II</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>
Exam Dates
Exam Dates

* Techniques of Integration Exam—Wednesday, February 22 at 6–7 PM in Science B
Exam Dates

- Techniques of Integration Exam—Wednesday, February 22 at 6-7 PM in Science B
- Techniques of Integration Exam Retest—Tuesday, February 28 at 8-9 PM in Science B
Exam Dates

- Techniques of Integration Exam—Wednesday, February 22 at 6–7 PM in Science B
- Techniques of Integration Exam Retest—Tuesday, February 28 at 8–9 PM in Science B
- Midterm I—Tuesday, March 14 at 7–9 PM in Science B
Exam Dates

* Techniques of Integration Exam—Wednesday, February 22 at 6–7 PM in Science B
* Techniques of Integration Exam Retest—Tuesday, February 28 at 8–9 PM in Science B
* Midterm I—Tuesday, March 14 at 7–9 PM in Science B
* Midterm II—Tuesday, April 18 at 7–9 PM in Science B
Exam Dates

* Techniques of Integration Exam—Wednesday, February 22 at 6-7 PM in Science B
* Techniques of Integration Exam Retest—Tuesday, February 28 at 8-9 PM in Science B
* Midterm I—Tuesday, March 14 at 7-9 PM in Science B
* Midterm II—Tuesday, April 18 at 7-9 PM in Science B
* Final Exam—Tuesday, May 23
Homework
Everyone does the same homework
Homework

* Everyone does the same homework

* There are two homework schedules—one for MWF and one for TuTh classes
Homework

- Everyone does the same homework
- There are two homework schedules—one for MWF and one for TuTh classes
- Homework is due at the beginning of class
Homework

- Everyone does the same homework
- There are two homework schedules—one for MWF and one for TuTh classes
- Homework is due at the beginning of class
- We drop your three lowest scores
Pre-Reading Questions and Pre-Class Surveys
Pre-Reading Questions and Pre-Class Surveys

* Pre-reading problems are assigned for each class period
Pre-Reading Questions and Pre-Class Surveys

- Pre-reading problems are assigned for each class period
- Pre-reading problems are marked with an asterisk
Pre-Reading Questions and Pre-Class Surveys

* Pre-reading problems are assigned for each class period
* Pre-reading problems are marked with an asterisk
* Pre-Class Surveys are assigned for each class period (Q&A Tool 2.0)
Pre-Reading Questions and Pre-Class Surveys

* Pre-reading problems are assigned for each class period
* Pre-reading problems are marked with an asterisk
* Pre-Class Surveys are assigned for each class period (Q&A Tool 2.0)
* Pre-Class Surveys are 5% of your homework grade
Take Advantage of the System
Take Advantage of the System

* Each Math 1b section has an undergraduate course assistant
Take Advantage of the System

* Each Math 1b section has an undergraduate course assistant

* CAs hold 90 minute problem sections each week
Take Advantage of the System

* Each Math 1b section has an undergraduate course assistant
* CAs hold 90 minute problem sections each week
* TF Office Hours
Take Advantage of the System

* Each Math 1b section has an undergraduate course assistant
* CAs hold 90 minute problem sections each week
* TF Office Hours
* New location for the MQC
Which of the following are equal to
\[\int_1^5 \frac{\ln x}{x} \, dx? \]

Please circle all of the correct answers. You do not need to justify your solution.

(a) \[\sum_{i=1}^{5} \frac{\ln x_i}{x_i} \Delta x, \text{ where } \Delta x = 4/n \text{ and } x_i = 1 + i\Delta x_i. \]

(b) \[\lim_{n \to \infty} \sum_{i=1}^{5} \frac{\ln x_i}{x_i} \Delta x, \text{ where } \Delta x = 4/n \text{ and } x_i = 1 + i\Delta x_i. \]

(c) \[\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\ln x_i}{x_i} \Delta x, \text{ where } \Delta x = 4/n \text{ and } x_i = 1 + i\Delta x_i. \]

(d) \((\ln 5)^2/2\)

(e) \[\frac{1}{2} \left(\frac{\ln 5}{5} \right)^2 - \frac{1}{2}(\ln 1)^2 \]

(f) \[\frac{1}{5^2} - \frac{1}{1^2} \]

(g) \(\ln(\ln(5)) - \ln(\ln(1))\)

(h) \[\frac{\ln 1}{1} + \frac{\ln 2}{2} + \frac{\ln 3}{3} + \frac{\ln 4}{4} \]
Put the following in *ascending* order (with “=” or “<” signs between each expression. You do not need to justify your solution. [Hint: Think about which expressions are positive, which are negative, and which are zero. A picture may be helpful.]

(a) \(\int_2^6 \ln t \, dt \)

(b) \(\ln 2 + \ln 3 + \ln 4 + \ln 5 \)

(c) \(\ln 3 + \ln 4 + \ln 5 + \ln 6 \)

(d) zero

(e) \(\ln(2/6) \)

(f) \(\lim_{h \to 0} \frac{\ln(2 + h) - \ln 2}{h} \)
Important Addresses

* Thomas W. Judson (Course Head)
 judson@math.harvard.edu

* Course Web Site http://
 www.courses.fas.harvard.edu/~math1b/

* Sectioning Directions http://
 abel.math.harvard.edu/sectioning/index.html