VI.4 The probability \(p \) that a specific player has four aces is \(\binom{48}{9}/\binom{52}{13} \) (choosing 9 cards out of 48 non-aces). The probability of this player not get four aces in \(x \) deals is \((1 - p)^x\); we need \(x \) so that \((1 - p)^x \leq 1/2\). This requires \(x \leq \log(1/2)/\log(1 - p) \approx 262.1\), so 263 deals are necessary.

The probability that some player has four aces is \(4p \), so the probability of nobody getting four aces in \(x \) deals is \((1 - 4p)^x\). Solving for \((1 - 4p)^x \leq 1/2\) yields \(x \leq \log(1/2)/\log(1 - 4p) \approx 65.3\), so 66 deals are necessary.

VI.5 Note that \(P\{\text{exactly } i \text{ hits on target}\} = \binom{10}{i} \left(\frac{1}{6}\right)^i \left(\frac{4}{6}\right)^{10-i} \). Hence
\[
P\{\text{at least two hits}\} = 1 - P\{\text{no hits}\} - P\{\text{one hit}\} = 1 - (4/5)^{10} - 10(4/5)^9 \approx 0.624.
\]

VI.8 First we calculate the probability that the birthdays fall in two specified months (say \(A \) and \(B \)) and at least once in \(A \) and in \(B \). Each birthday has a \(2/12 = 1/6 \) chance of being in \(A \) or \(B \), so the probability that all birthdays are in \(A \) and \(B \) is \((1/6)^6\). However, this includes the cases that all birthdays are in one of the two months, so we need to subtract off \(2(1/12)^6 \). Hence the probability of the birthdays falling in \(A \) and \(B \) and at least one in each is \((1/6)^6 - 2(1/12)^6\).

Now to solve the actual problem, we can just multiply \((1/6)^6 - 2(1/12)^6\) by the number of ways to choose two months. Notice that there is no overcounting. Hence the final answer is \(\binom{12}{2} \left((1/6)^6 - 2(1/12)^6\right) \).