1) Which of the following properties apply to the Baker transformation T on the square $[0, 1) \times [0, 1)$.

 a) The map is continuous.
 b) There is a conjugation of the map to a subshift $S(Y) \subset \{0, 1\}^N$.
 c) There is a conjugation of the map to the shift $S(Y) \subset \{0, 1\}^N$.
 d) The map is area-preserving.
 e) The map has many periodic points.
 f) The map has no periodic points.
 g) The map is invertible.

2) True or False: If you take a subshift X of finite type, and a cellular automaton ϕ, then $\phi(X)$ is a subshift of finite type.

3) True or False: If you take a sophic subshift and a cellular automaton ϕ, then $\phi(X)$ is a sophic subshift.

4) Which of the following inclusions are true? (I had this once wrong on the blackboard and Orr had corrected it):

 a) subshifts \supset subshifts of finite type \supset sophic subshifts.
 b) subshifts \supset sophic subshifts \supset subshifts of finite type.

5) True or False: the language of a subshift of finite type is the set of forbidden words.

6) What can you say about the subshift X of finite type over the alphabet $\{a, b, c\}$ defined by the forbidden words $\{aa, bb, cc, ac, ba, cb\}$?

 a) X does not contain any point.
 b) X contains only finitely many points.
 c) X contains infinitely many points.

7) Which of the following subshifts is the shift over the alphabet $\{a, b\}$ for which all words $bab, baab, baaaab, baaaabaab, baaaabaaab, ...$ etc. are forbidden?

 a) The Fibonacci shift
 b) The even shift
 c) The golden mean shift
 d) The full shift.

8) When doing symbolic dynamics for the Arnold cat map $T(x, y) = (2x + y, x + y) \mod 1$, one uses a subshift of finite type over an alphabet with a minimal amount of letters. This alphabet has

 a) 2 elements.
 b) 3 elements.
 c) 5 elements.
 d) 6 elements.

9) Two random variables Y and Z taking finitely many values are called uncorrelated if

 a) $P[Y = a, Z = b] = P[Y = a]P[Z = b]$ for all possible numbers a, b.

10) Assume, a sequence of independent identically distributed random variables $Y_1, Y_2, Y_3, ...$ describes drawing a card from an infinite deck containing 52 types of cards. It is assumed that each card appears with the same probability $1/52$ and that a card can appear multiple times. How do you model these random variables?

 a) $Y_k(y) = y$, where $y \in \{1, ..., 52\}$.
 b) $Y_k(y) = k$, where $y \in \{1, ..., 52\}$.
 c) $Y_k(y) = y$, where $y \in \{1, ..., 52\}$.
