VLAOSV DYNAMICS (*)

Math118, O. Knill

ABSTRACT. Vlasov dynamics generalizes n-body particle dynamics. But there is a geometric twist.

VLAOSV DYNAMICS. Let M be a manifold of dimension p with measure m and cotangent bundle T *M and let N be a manifold of dimension q with cotangent bundle T *N. Take N = R, T *M = R^n. A one-parameter family of maps X^t = (f^t, g^t): T *M → T *N is defined by the differential equation

\[\dot{f} = g, \dot{g} = -\int_{T^*N} \nabla V(f(\omega) - f(\omega))) \, d\omega \]

where V is a potential. This is a Hamiltonian system.

FACT. If (f, g) move according to \(\dot{f} = g, \dot{g} = -\int \nabla V(f(\omega) - f(\omega))) \, d\omega \), then the density \(P = (f, g) \) satisfies the Vlasov equation

\[\frac{d}{dt} P(x, y, t) + y \nabla_x P(x, y, t) - E(x) \nabla_y P(x, y, t) = 0 \]

with \(E(x) = \int_{T^*N} \nabla_x V(x - x') \, dx'dx \).

PROOF. We have \(\int \nabla \cdot (\frac{P}{V} \nabla V(x')) \, dxdy = \frac{1}{2} \int_{T^*N} \nabla_x h(x, y)P'(x, y) \, dxdy = \frac{1}{2} \int_{T^*N} \nabla_x h(x, y)P'(x, y) \, dxdy = \frac{1}{2} \int_{T^*N} \nabla_x h(x, y)P'(x, y) \, dxdy = 0 \).

EXAMPLES. 1) If \(T^*M \) is zero dimension with \(n \) points \(\{x_1, \ldots, x_n\} \), then \(X^t \) describes the evolution of \(n \) particles \((f^t, g^t) = (X^t, \omega) \). Vlasov dynamics is therefore a generalisation of n-body dynamics. 2) If \(N = M \), then \(X^t \) are volume-preserving deformations of \(T^*M \).

LINEARIZED MOTION. The evolution of \(DX^t \) at a point \(\omega \in M \) is \(DF_\omega(f) = -\int_{T^*N} \nabla_x V(f(\omega) - f(\omega))) \, d\omega \). The critical points of \(Df \) can only appear for \(\omega \), where \(Df(\omega) \) is linearly independent. More generally \(Y_0(t) = \omega \in T^*M \mid DX_0(\omega) \) has rank \(2q - k = dim(T^*N) - k \) is time independent. The set \(Y_0 \) contains \(\{\omega \mid Df(\omega) = \lambda \} \).

LYAPUNOV EXPONENT.

\[\lambda(\omega) = \lim sup_{t \to \infty} t^{-1} \log \|D(X^t(\omega))\| \in [0, \infty]. \]

\(\lambda(\omega) \) is the maximal Lyapunov exponent of the SL(2q, R)-cocycle \(A = A(f) \) along an orbit \((f^t, g^t) \). The Lyapunov exponent could be infinite.

HESSIAN. Differentiation of \(DF = Df(f^t) \) at a critical point \(\omega^* \) gives \(Df^t(f^t) = B(f^t)Df^t(f^t) \). The eigenvalues \(\lambda_i \) of the Hessian \(D^2f \) satisfy \(\lambda_i = \lambda_i(f) \lambda_j \).

EQUILIBRIUM MEASURES. Equilibrium measures are stationary solutions of the Vlasov equation. One can get them with a Maxwellian ansatz \(P(x, y) = C \exp(-\beta V(x, y)) \). For \(q = 0 \), they are called Bernstein-Greens-Kraskul (BGK) modes.

If \(q = 1 \), they satisfy the integro-differential equation \(Q\omega = -\beta S(\omega) \). Then the Maxwellian distribution \(P(x, y) = S(y)Q(x) \) is an equilibrium solution of the Vlasov equation to the potential V because \(y_0 \nabla P = y \frac{S(y)}{Q(x)} \). They are called Bernstein-Greens-Kraskul (BGK) modes.

\[\frac{d}{dt} \int_{T^*N} \nabla_x V(x - x') \, dx'dy = \int_{T^*N} \nabla_x V(x - x') \, dx'dy = \int_{T^*N} \nabla_x V(x - x') \, dx'dy \]

which holds in a neighborhood chart of \(f \). The standard Piccard existence theorem for differential equations in Banach manifolds assures local existence.

The global Lipschitz assumption and a Gronwall estimate assures that \(\|X(\omega)\| \) cannot grow faster than exponentially leading to global existence.

The result could also be derived from the existence theorem applied to finite measure where the evolution is a n-body evolution. Uniqueness and global existence of solutions on a dense set of point measures implies uniqueness in general if the dynamics depends continuously on the measure m.

BATT-NEUZNSRT-BROWN-HEPP-DOBRUSHIN EXISTENCE THEOREM.

If \(\nabla_x V \) is bounded and globally Lipschitz continuous, then \(f(\omega) = -\int \nabla_x V(f(\omega) - f(\omega'))) \, d\omega(\omega') \) has a unique global solution. Consequently the Vlasov equation has a unique and smooth solution. If \(V \) and \(P \) are smooth, then \(P^t \) is piecewise smooth.

PROOF. Take \(M = T^*N \) and let \(m = P^t \) be the initial measure. The Hamiltonian differential equation for \(X = (f, g) \) on the complete metric space of all continuous maps from \(M \) to \(T^*N \), which is a Banach manifold over the Banach manifold \(C^\infty(M, T^*N) \). The distance is \(d(h, h') = sup_{h \in M} d(h, h') \).

With \(X^t = I_\omega, \) the initial data \((f_0, g_0)(x) = x \), we have \(P_0 = (f_0, g_0) \). The differential equation \(\dot{f} = g \) and \(\dot{g} = G(f) = -\int_{T^*N} \nabla_x V(f(\omega) - f(\omega))) \, d\omega(\omega') \) is \(C(M, T^*N) \) has a unique solution: because of Lipshitz continuity

\[||G(f) - G(f')||_\omega \leq 2\|D(\nabla_x V)||_\omega \cdot ||f - f'||_\omega \]

which holds in a neighborhood chart of \(f \). The standard Piccard existence theorem for differential equations in Banach manifolds assures local existence.