TAYLOR FORMULA. Because \(\frac{df(z(t))}{dt} = f(x + r \cos(t) + iv + r \sin(t)) = f(w)(r \cos(t) + iv \sin(t)) = f(w)(z - w) \), this can be rewritten as \(\int_{jw}^{zw} f(w)(z-w) \, dz = f(z) \). This is the Cauchy integral formula.

Since we can differentiate the left hand side arbitrarily often with respect to \(z \), this proves that an analytic function is arbitrarily often differentiable and \(f(w)/(z-w) \) has the \(n \)th derivative \(\frac{f^{(n)}(z)}{n!} \), we get
\[
f(w) = \sum_{n=0}^\infty \frac{f^{(n)}(z) (w-z)^n}{n!}
\]
which is the familiar Taylor formula if \(f \) is real.

CAUCHY THEOREM. The Cauchy Riemann equations also prove the Cauchy formula.
If \(C \) is a closed curve in simply connected region \(U \) in which \(f \) is analytic, then
\[
\int_C f(z) \, dz = \int f(z(0)) z'(t) \, dt = 0
\]
because the latter is the line integral of \(F(x,y) = -(\bar{v}(x,y), u(x,y)) \) and Greens theorem in multi-variable calculus shows that curl(\(F \)) = curl(\(-u \)) = (\(u_y, -v_x \)) = 0. In other words, the vector-field \(F(x,y) = -(\bar{v}(x+iy), u(x+iy)) \) is conservative.

FIXED POINTS. Because the eigenvalues of the rotation dilation \(A \) come in complex conjugate pairs, the fixed points or periodic points can not be hyperbolic. Fixed points are either stable sinks, or unstable sources elliptic, conjugated to a rotation. For example, the fixed points of \(f(z) = z^2 + c \) are \((1 \pm \sqrt{1 - 4c})/2 \) and the linearization at those points is \(df(z) = (1 \pm \sqrt{1 - 4c})z \).

TOPOLOGY. Here are some topological notions occurring in complex dynamics.
OPEN. A set \(U \) in the plane is called open if for every point \(z \), there exists \(r > 0 \) such that \(B_r(z) = \{ w | |w-z| < r \} \) is contained in \(U \). One assumes the empty set to be open. The entire plane is open too.
CLOSED. A set \(U \) in the plane is closed, if the complement of \(U \) is open. The entries plane is closed.
INTERIOR. The interior of a set \(U \) is the subset of all points \(z \) in \(U \) for which there exists \(r > 0 \) such that \(B_r(z) \subseteq U \). If \(U \) is open, then \(U \) is equal to its interior.
BOUNDARY. The boundary of a set \(U \) is the closure of \(U \) minus the interior of \(U \). The boundary of a closed set without interior is the set itself.
SIMILY CONNECTED. A set \(A \) is simply connected, if every closed curve contained in \(A \) can be deformed to a point within \(A \). A simply connected subset of the plane has no "holes".
CONNECTED. A set \(A \) is called connected if one can not find two disjoint open sets \(U, V \) such that \(A \cap \overline{U} \neq \emptyset, A \cap \overline{V} \neq \emptyset \).

A set \(A \) is connected if and only if the complement is simply connected.

To verify that the complement of \(M \) is simply connected, one finds a smooth bijection of the complement of the unit disc with the complement of \(M \). The bijection is given by \(\Theta(z) = \lim_{n \to \infty} (f^n(z))^{1/2^n} \). The Mandelbrot set \(M \) is connected as well as simply connected. The Julia sets \(J_c \) are connected if \(c \) is in \(M \).
COMPACT. A subset of the complex plane is called compact if it is closed and bounded. A sequence in a compact set always has accumulation points. The Mandelbrot set as well as the Julia sets are examples of compact sets.
PERFECT SETS. A subset \(J \) in the complex plane is perfect if it is closed and every point \(z \) in \(J \) is an accumulation point for \(z \) in \(J \). Perfect sets contain no isolated points.
NOWHERE DENSE. A subset \(J \) in the complex plane is nowhere dense if the interior of its closure is empty. A Julia set \(J_c \) is nowhere dense if \(c \) is outside the Mandelbrot set.
CANTOR SET. A perfect nowhere dense set is also called a Cantor set. An example is the Cantor middle set. A Julia set \(J_c \) is a Cantor set if \(c \) is outside the Mandelbrot set.