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ABSTRACT. Light moves on shortest paths. The corresponding dynamical system is called the geodesic flow.
We will see examples of geodesic flows which are integrable like the flow on a surface of revolution. This is an
introduction to geodesic flows without Riemannian geometry which allows to go straight to the essential math
without too much formalism.

ARCHIMEDES THEOREM. We have seen that the shortest distance between two points in Euclidean space is
the line. We have proven this in the case of the plane without use of derivatives. This ”Archimedes proof” can
be generalized to higher dimensional Euclidean spaces too.

DEFINITION. Given a smooth surface in space, a point P on the surface and
initial tangent velocity vector v. Define a path on the surface by letting a
particle move freely in space under the influence of a force perpendicular to
the surface in such a way that the particle stays on the surface. This defines
a path on the surface called geodesic flow. This dynamical system can be
described using differential equations too. However, for many of the examples
considered here, we can work with the intuitive notion. If the surface has a
boundary, then we have a surface billiard. In that case, we assume the mass
point bounces off the boundary according to the usual billiard law.

The force F (x, v) perpendicular to the surface at the point x to the direction v
can be computed by intersecting the plane spanned by the unit normal vector
~n and the vector v with the surface, leading to a curve with a radius of

curvature r. Applying the centrifugal force F (x, v) = |v|2n/r assures that
the particle stays on the surface. The number κ(x, v) = 1/r(x, v) is called the
sectional curvature at the point in the direction v.

MOTIVATION. The numerical method, we used to compute the geodesic flow
on some of the pictures on this page is a mechanical one. We constrain the
free motion onto the surface. Given a surface X in space we look at the free
evolution of the particle subject to a strong force which pulls the particle to the
surface. That force is always perpendicular to the surface and so perpendicular
to the velocity of the particle. Especially, it does not accelerate the particle.
Do a free evolution in space for some time dt, then projection the vector back
onto the surface. X(u, v) → X(u, v) + V → X(u1, v1) This method is so
efficient and simple, that we have let the ray-tracing program (Povray) do all
the computation for the pictures.

EXAMPLE: GEODESICS ON THE SPHERE.
On a sphere, the mass-point is at any time subject to a force which goes through
the center of the sphere. Angular momentum conservation d

dt
L = d

dt
x × v = 0

implies that the particle stays on a plane spanned by the normal vector and
the initial vector v. The geodesic curve is the intersection of the plane with
the sphere: it is a grand circle. The plane can be seen as a limiting case of the
sphere, when the radius goes to infinity. A particle which initially is on a plane
and has a velocity tangent to the plane stays on the plane without any need of
constraint. The geodesic curves consist of lines.

EXAMPLE: GEODESICS ON SURFACE OF REVOLUTION. If
φ is the angle between a longitudinal line and the geodesic curve
and r is the distance from the axes of rotation, then the angular
momentum L = r sin(φ) is conserved. It is called the Clairot

integral. Examples of surfaces of revolution are the cylinder, the
cone or the torus. If we write the torus as part of the plane with
a space dependent metric which depends only on one coordinate,
we have a geodesic flow on a surface of revolution. The Clairot
integral r sin(φ) is the analogue of Snells integral g(x) sin(α) we
have seen before.

METRIC AND DISTANCE. Consider a two-dimensional parametrized surface (u, v) 7→ r(u, v). At a point
(u, v, r(u, v), we have the tangent vectors dx = rudu, dy = rvdv The distance element ds =

√
dx · dx + dy · dy

satisfies ds2 = (rudu+rvdv)2 = ru ·rududu+ru ·rvdudv+rv ·rudvdu+rv ·rvdvdv. With g =

[

ru · ru ru · rv

rv · ru rv · rv

]

,

this can be written as ds2 = (du, dv) ·g(du, dv). A new dot product < a, b >= a ·gb and length ||a|| =
√

< a, a >

allows to write the length of a curve as
∫ b

a
||r′(t)|| dt. Riemanns view is to start with a two dimensional surface

M and a symmetric matrix at each point gij(x, y) defined so that both eigenvalues of g are positive everywhere.
The pair (M, g) defines a Riemannian manifold. One can measure distances on it without referring to the
ambient space in which the surface is embedded.

EXAMPLE: GEODESICS ON THE FLAT TORUS. Because a
region in a flat torus can be seen as a region in the plane, geodesics
on the flat torus are made of lines. With gij = 1 if i = j and
gij = 0 if i 6= j as in the case of the plane, the differential equations
for the geodesics are ẍk = Γk

ij ẋ
iẋj = 0. There is no acceleration.

The fact that the shortest connections between two points A, B
on the flat plane are straight lines can be seen in different ways.
The straight line gives a distance between the two points as we
have seen before in the plane.

EXAMPLE: HILLY REGION. Let r(u, v) = (u, v, f(u, v)) be a parameterization of the graph of f . The

metric is g(u, v) =

[

ru · ru ru · rv

rv · ru rv · rv

]

=

[

1 + f2

u fufv

fufv 1 + f2

v

]

. So, if r(u(t), v(t)) is a curve on the surface,

we can calculate its length. We should get the same result as if we would compute the length of the curve
r(t) = (u(t), v(t), f(u(t), v(t))) in three dimensional flat space. But with the internal formalism, it is possible
to compute the length without using the third dimension.

CONNECTION. When minimizing the length of a curve, we have to find the Euler Lagrange equations. This
involves differentiating the metric g further. The Christoffel symbols are defined as

Γijk =
1

2
[

∂

∂xi
gjk(x) +

∂

∂xj
gik(x) − ∂

∂xk
gij(x)] .

For a parametrized surface, this is

Γ111 = ruu · ru, Γ112 = ruu · rv

Γ121 = ruv · ru, Γ122 = ruv · rv

Γ211 = rvu · ru, Γ212 = rvu · rv

Γ221 = rvv · ru, Γ222 = rvv · rv



FREE MOTION ON A SURFACE. A particle of momentum p has the Lagrangian F (t, x, p) = 1

2
gij(x)pipj .

We use Einstein summation convention to automatically sum over pairs of lower and upper indices. We

want to minimize I(x) =
∫ b

a
F (t, x, ẋ)dt =

∫ t2

t1
gij(x)ẋiẋj dt With Fpk

= gkip
i and Fxk

= 1

2

∂
∂xk gij(x)pipj and

the identities 1

2

∂
∂xj gik(x)ẋiẋj = 1

2

∂
∂xi gjk(x)ẋiẋj gkiẍ

i = −Γijkẋiẋj and the definitions gij = g−1

ij , Γk
ij := glkΓijl

this can be written as

ẍk = −Γk
ij ẋ

iẋj

Because F is time independent, H(p) = pkFpk −F = pkgkip
i −F = 2F −F = F (p) is constant along the orbit.

GEODESICS ON A SURFACE With G(t, x, p) =
√

gij(x)pipj =
√

2F , the functional I(γ) =
∫ t2

t1

√

gij(x)ẋiẋj dt

is the arc length of γ. The Euler-Lagrange equations d
dt

Gpi = Gxi can using the previous function F be written

as d
dt

F
pi

√
2F

=
F

xi√
2F

Which means d
dt

Fpi = Fxi because d
dt

F = 0. Even so we got the same equations as for the free

motion, they are not equivalent: a reparametrization of time t 7→ τ(t) leaves only the first equation invariant
and not the second. The distinguished parameterization for the extremal solution is proportional to the arc
length. The relation between the two variational problems for energy and arc length is a special case of the
Maupertius principle.

EXAMPLE: GEODESICS ON THE HYPERBOLIC PLANE. This is an example, where the surface is not given
as an embedded surface in R3. Instead, we assume that the distance on the upper half plane H is given by the
formula

L(γ) =

∫ b

a

√

ẋ(t)2 + ẏ(t)2

y(t)
dt .

THEOREM. On the hyperbolic plane, geodesics between two points P, Q is the
circle through P, Q which hits the x axes in right angles.

PROOF. For points P = (x, a), Q = (x, b) with the same x coordi-

nate, the distance is d(P, Q) =
∫ b

a
y′(t)/y(t) dt = | log(b/a)|. The

geodesic connection is a line. Now see H as part of the complex
plane and note that Moebius transformation

T (z) =
(az + b)

(cz + d)

with ad − bc = 1 maps circles to circles or lines is an isometry:
d(P, Q) = d(T (P ), T (Q)). Indeed, the two formulas Im(T (z)) =
Im(z)/|cz + d|2 and d/dtT (z(t)) = z′(t)/|cz + d|2 imply

∫ b

a

d/dtT (z(t))

Im(T (z(t))
dt =

∫ b

a

z′(t)

Im(z(t))
dt .
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To see that a Moebius transformation preserves circles, note that one can write T as a composition T = T2IT1,
where T1(z) = cz+d, T2(z) = a/c+(ad−bc)z/c and where I(z) = 1/z is the inversion at the unit circle. Because
all three transformations preserve circles also A circle through the origin is maped into a line. If a, b, c, d are
real, then T maps the upper half plane onto itself.

CHAOTIC GEODESIC FLOW. We have seen that the cat map T (x, y) = (2x + y, x + y) is integrable and
harmless on the plane. You have computed in a homework an integral, a function F (x, y) which is invariant
under T . When projecting the map onto the torus R2/Z2, then chaos happens. We have seen that the map
allows a description by a symbolic dynamical system. Especially, it is chaotic in the sense of Devaney. A similar
thing happens when we look at the geodesic flow on the upper half plane H . The orbits are circles. Even so
you have sensitive dependence on initial conditions (as you can see in the picture above that if you start with
different direction from the same point, the trajectories separate fast). We can do the analogue of the torus
construction on the hyperbolic plane: take a discrete subgroup Γ of the group of all Möbius transformations.

For example Γ could be the subgroup of Möbius transformations
with integer entries. It is called the modular group. An other
subgroup is the modular group lambda Λ of all transformation
T (z) = (az + b)/(cz + d), where a, d are odd integers and b, d are
even integers. The equivalent region to the square in the case of
the torus is the fundamental region H/Λ which is displayed to
the right. Billiard trajectories move on circles, when hitting the
the boundary z of the region they enter at an other place γ(z)
similar than Pacman does for the torus. The corresponding flow
is chaotic for any known notion of chaos.
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THE DOUGHNUT. The rotationally symmetric torus in space is
parameterized by

r(u, v) = ((a + b cos(2πv)) cos(2πu), (a + b cos(2πv)) sin(2πu), b sin(2πv)) ,

where 0 < b < a. The metric is

g11 = 4π2(a + b cos(2πv))2 = 4π2r2

g22 = 4π2b2

g12 = g21 = 0

so that length of a curve is measured with the formula

∫ b

a

4π2(r(u(t), v(t)))2u̇2 + b2v̇2) dt .

The circles v = 0, v = 1/2 are geodesics as are all the circles
u = u0. The surface is rotationally symmetric and one has the
Clairot integral.

HOPF-RYNOV THEOREM ETC. The geodesic flow is defined for all times for closed complete surfaces without
boundary. On every point on the surface and in any direction, there exists exactly one geodesic curve. Every
geodesic subsegment of a geodesic curve is a geodesic curve. The shortest path between two points on the
surface is a geodesic. But as the sphere shows, not every geodesic is the shortest path (you might go into the
wrong direction on the grand circle). If two points are close enough, then the shortest geodesic connecting the
two points is the shortest curve.

REMARKS. It is not custom to define the geodesic flow by constraining the free flow to the surface. But it is a
useful fact and used for proving the integrability of the geodesic flow on the ellipsoid. The construction works in
general: the Nash embedding theorem assures that any Riemannian surface can be embedded isometrically
in an Euclidean space.


