THE DYNAMICS OF 2-GENERATOR SUBGROUPS
OF PSL(2, C)

Robert Brooks* and J. Peter Matelski

A classical result of Shimizu and Leutbecher (see, for instance [6], p. 59) asserts that if \[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\text{ and } \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
generate a discrete subgroup of PSL(2, C), then either \(c = 0\) or \(|c| \geq 1\). This has been strengthened by T. Jørgensen [4] as follows:

Jørgensen's Inequality. If \(X\) and \(Y\) generate a discrete, non-elementary subgroup of \(PSL(2, C)\), then

\[|\text{tr}(X) - 4| + |\text{tr}(XYX^{-1}Y^{-1}) - 2| \geq 1.\]

In this paper, we will show the existence of a sequence of inequalities, generalizing Jørgensen's inequality, which \(X\) and \(Y\) must satisfy in order for \(\langle X, Y \rangle\), the group generated by \(X\) and \(Y\), to be discrete. These conditions are mutually independent in the sense that, for given \(X\) and \(Y\), at most one can fail to hold. These conditions arise from the Shimizu-Leutbecher process defined below.

For convenience, consider the upper half space model of hyperbolic 3-space. We denote a directed geodesic \(\ell\) by the ordered pair of its endpoints; so \(\ell = (a, b)\), \(a, b \in \mathbb{C}\), \(a \neq b\). The complex distance \(r = \delta(\ell_1, \ell_2)\)

* Partially supported by NSF Grant #MCS 7802679.

© 1980 Princeton University Press
Riemann Surfaces and Related Topics
Proceedings of the 1978 Stony Brook Conference
0-691-08264-2/80/000065-07 $00.50/1 (cloth)
0-691-08267-7/80/000065-07 $00.50/1 (paperback)
For copying information, see copyright page

65
between two directed geodesics \(l_1 = (a_1, b_1) \) and \(l_2 = (a_2, b_2) \) is defined as follows: \(r \in \mathbb{C} \); \(\text{Re}(r) \geq 0 \) is the hyperbolic distance between the geodesics; \(\text{Im}(r) \) is the angle made by the geodesics along their common perpendicular and is determined modulo \(2\pi \) unless \(\text{Re}(r) = 0 \), in which case \(\pm \text{Im}(r) \) is determined modulo \(2\pi \). One may compute the complex distance by the formula:

\[
\cosh^2(r/2) = (a_1, a_2, b_2, b_1),
\]

where \((z_1, z_2, z_3, z_4) \) is the usual cross ratio, as can be checked if \(l_1 = (-1, 1) \) and \(l_2 = (-e^r, e^r) \).

Let \(X \) be a loxodromic element of \(\text{PSL}(2, \mathbb{C}) \) and \(\text{axis}(X) \) the directed geodesic in hyperbolic space joining the fixed points of \(X \). If \(\ell \) is a perpendicular to \(\text{axis}(X) \), then the complex distance \(r \) between \(\ell \) and \(X(\ell) \) is called the complex translation length of \(X \). In fact \(X \) translates \(\text{Re}(r) \) units along \(\text{axis}(X) \) and rotates hyperbolic space by \(\text{Im}(r) \) about \(\text{axis}(X) \). We have

\[
\text{tr}^2 X = 4 \cosh^2(r/2),
\]

which makes sense even if \(X \) is not loxodromic.

Given \(X \) loxodromic with complex translation length \(r \), and \(Y \) in \(\text{PSL}(2, \mathbb{C}) \), one may check the formula:

\[
\text{tr}((X Y Y^{-1}) X^{-1}) - 2 = - (1 - \cosh(r))(1 - \cosh(\beta)),
\]

for \(\beta \) the complex distance from \(\text{axis}(X) \) to \(\text{axis}(X Y Y^{-1}) \); this follows by normalizing

\[
X = \begin{pmatrix} \cosh(r/2) & \sinh(r/2) \\ \sinh(r/2) & \cosh(r/2) \end{pmatrix},
\]

\[
Y Y X^{-1} = \begin{pmatrix} \cosh(r/2) & e^\beta \sinh(r/2) \\ e^{-\beta} \sinh(r/2) & \cosh(r/2) \end{pmatrix}.
\]
Given X and Y elements of $\text{PSL}(2, \mathbb{C})$ with X loxodromic, we define the Shimizu-Leutbecher sequence inductively by:

$$Y_1 = XY^{-1}, \quad Y_{i+1} = Y_iXY_i^{-1}.$$

Let τ be the complex translation length of X, and let β_i be the complex distance between $\text{axis}(X)$ and $\text{axis}(Y_i)$. A necessary condition for the group generated by X and Y to be discrete is that the set $\{\cosh(\beta_i)\}$ should form a discrete subset of \mathbb{C}.

The following lemma allows one to compute $\cosh(\beta_1)$ inductively:

Lemma. $\cosh(\beta_{i+1}) = (1 - \cosh(\tau))\cosh^2(\beta_1) + \cosh(\tau)$.

This follows from the hyperbolic law of cosines: if l_0, l_1, l_2 are given, the law of cosines gives a formula for $\omega = \delta(l_1, l_2)$ in terms of $\tau_1 = \delta(l_0, l_1)$, $\tau_2 = \delta(l_0, l_2)$ and α which is the complex distance from the perpendicular between l_0 and l_1 to the perpendicular between l_0 and l_2. The formula is:

$$\cosh(\omega) = \cosh(\tau_1)\cosh(\tau_2) - \cosh(\alpha)\sinh(\tau_1)\sinh(\tau_2).$$

The lemma follows by setting $\tau_1 = \tau_2 = \beta_i$ and $\alpha = \tau$. One way to check the law of cosines is to normalize so that $l_0 = (0, \infty)$, $l_1 = (t_1, t_1^{-1})$, and $l_2 = (et_2, et_2^{-1})$ where $t_1 = \tanh(\tau_1/2)$, $t_2 = \tanh(\tau_2/2)$, and $e = e^\alpha$; then compute $\cosh^2(\omega/2) = (t_1, et_2, et_2^{-1}, t_1^{-1})$. Note that l_2 does indeed have complex distance τ_2 to l_0 with $(-e^\alpha, e^\alpha)$ as common perpendicular.

Now let $z_i = (1 - \cosh(\tau))(\cosh(\beta_i))$. We may rewrite the above inductive formula as:

$$z_{i+1} = z_i^2 + C,$$

where $C = (1 - \cosh(\tau))(\cosh(\tau))$, and we have that if X and Y generate a discrete group, then $\{z_i\}$ forms a discrete subset of \mathbb{C}.

The dynamical behavior of C under a quadratic polynomial is well understood from the work of Fatou-Julia ([1], [5]; see also [2]). Let
\[f^i(z) = f \circ f \cdots \circ f(z), \text{ where } f(z) = z^2 + C; \text{ a solution } \rho \text{ of the polynomi-} \\
\text{al equation } f^i(z) = z \text{ will be called a stable periodic point of period } i \]

if \[\left| \frac{d}{dz} f^i(\rho) \right| < 1. \] Then \[f^i \] is contracting on any disk \[B_\varepsilon = \{ z : |z - \rho| < \varepsilon \} \]
on which \[\left| \frac{d}{dz} f^i \right| < 1. \] The theorem of Fatou-Julia ensures that, for any choice of \(C \), there is at most one stable periodic orbit. Further results of Fatou-Julia allow one to draw by computer the region \(E \) of \(C \) defined by \(E = \{ z : f^i(z) \text{ converges to the stable periodic orbit} \} \) (see Fig. 1), and the region of \(C \) defined by \(\{ C : z^2 + C \text{ has a stable periodic orbit} \} \) (see Fig. 2).

To obtain the above-mentioned inequalities, let \(p \) be a stable periodic point of \(f \) of period \(n \); we may assume that \(|p| < 1/2 \). Expanding

\[f^n(z) = \sum_{i=0}^{2^n} a_i(z-p)^i \]
as a Taylor series about \(p \), we have

\[|f^n(z)-p| = |z-p| \left| \sum_{i=1}^{2^n} a_i(z-p)^{i-1} \right| \leq |z-p|(2^n-1)m[\max(1, |z-p|^{2^n-1})] \]

where \(m = \max(|a_i|) \). Setting \(K \leq \frac{1 - \left| \frac{d}{dz} f^n(p) \right|}{(2^n-1)m} \), we see that on the disk \(|z-p| < \min(K, 1) \), \(f^n \) is a contracting map. If also \(K < \frac{\left| \frac{d}{dz} f^n(p) \right|}{m \cdot (2^n-1)} \), then \(f^n(p) \) has no roots other than \(p \) in the disk \(|z-p| < K \).

In the case \(n = 1 \), the fixed points of \(f(z) = z^2 + (1 - \cosh(r))(\cosh(r)) \) are \(\cosh(r) \) and \(1 - \cosh(r) \). If \(|1 - \cosh(r)| < \frac{1}{2} \), we may set \(p \leq 1 - \cosh(r) \), and \(\frac{df}{dz}(p) = 2(1 - \cosh(r)) \), \(m = 1 \). We thus have the inequality: If \(0 < |(1 - \cosh(r))(\cosh(\beta) - 1)| < \min(1 - 2|\cosh(r) - 1|, 2|\cosh(r) - 1|) \), then \(<X, Y> \) is not discrete. In view of our expressions for \(\cosh(r) \) and \(\cosh(\beta) \) given above, this becomes Jørgensen's inequality.

In the case \(n = 2 \), the periodic points of order 2 of \(f(z) = z^2 + C \)

\[x = \frac{-1 \pm \sqrt{1 - 4(C+1)}}{2}, \text{ and } \frac{df^2}{dz}(p) = 4(C+1). \] Using the estimates
Let $p < \frac{1}{2}$, $|C| < \frac{5}{4}$, so that $0 < |z-p| < \frac{1}{12} \min(1-4|C+1|, 4|C+1|)$ implies $<X,Y>$ is not discrete.

In terms of the matrix functions of X and Y, this may be rewritten as:

$$0 < \left| \frac{\text{tr}(XYX^{-1}Y^{-1})}{2} - \frac{\text{tr}^2(X)}{2} - \frac{1 \pm \sqrt{(\text{tr}^2(X) - 5\text{tr}^2(X) - 1)}}{2} \right|$$

$$< \frac{1}{12} \min\left(1 - |\text{tr}^4(X) - 6\text{tr}^2(X) - 4|, |\text{tr}^4(X) - 6\text{tr}^2(X) + 4|\right)$$

implies $<X,Y>$ is not discrete.

Acknowledgements: We would like to thank Henry Laufer for suggesting and assisting us with the use of the computer, and Bernard Maskit for his advice and encouragement. Also, we want to thank Dusa McDuff for showing us Fatou’s paper.

References

Fig. 1. The set E for $f(z) = z^2 + C$ with $C = 0.1 + 0.6i$.

(0, 1.2)

(0, -1.2)
Fig. 2. The set of C's such that \(f(z) = z^2 + C \) has a stable periodic orbit.
RIEMANN SURFACES AND RELATED TOPICS: PROCEEDINGS OF THE 1978 STONY BROOK CONFERENCE

EDITED BY

IRWIN KRA
AND
BERNARD MASKIT

PRINCETON UNIVERSITY PRESS
AND
UNIVERSITY OF TOKYO PRESS

PRINCETON, NEW JERSEY
1981