Problem Set 3 Solution Set

Anthony Varilly

Math 113: Complex Analysis, Fall 2002

1. Let $f(z) = e^z$. Let a be a positive real number, and let C be the rectangle with vertices $0, a, a + 2\pi i$ and $2\pi i$. Explicitly compute the integral

$$\oint_C f(z) \, dz$$

without using Cauchy's theorem, and verify that Cauchy's theorem applies in this case.

![Diagram of rectangle with vertices 0, a, a + 2\pi i, and 2\pi i]

Solution. Colloquially, we write

$$\oint_C = \int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_3} + \int_{\gamma_4} .$$

Now we compute the four integrals individually:

$$\int_{\gamma_1} e^z \, dz = \int_0^a e^t \, dt = e^a - 1 .$$

$$\int_{\gamma_2} e^z \, dz = \int_0^1 e^{(1-t)+(a+2\pi i)t} 2\pi i \, dt = e^a e^{2\pi i t}\bigg|_0^1 = 0 .$$

$$\int_{\gamma_3} e^z \, dz = \int_0^1 e^{(a+2\pi i)(1-t)+2\pi it} (-a) \, dt = e^a \int_0^1 e^{-at} (-a) \, dt = e^a e^{-at}\bigg|_0^1 = 1 - e^a .$$

$$\int_{\gamma_4} e^z \, dz = \int_0^1 e^{2\pi i (1-t)} (-2\pi i) \, dt = e^{-2\pi it}\bigg|_0^1 = 0 .$$

Hence

$$\oint_C f(z) \, dz = (e^a - 1) + 0 + 0 + (1 - e^a) = 0 .$$

This verifies Cauchy's Integral Theorem since f is analytic inside the region defined by C. □
2. Let \(\gamma \) be the semicircular arc from 1 to \(-1\) in the upper half plane. Use the \(ML \)-inequality to prove that
\[
\left| \int_{\gamma} \frac{e^z}{z} \, dz \right| \leq \pi e.
\]

Solution. The \(ML \)-inequality tells us in this case that
\[
\left| \int_{\gamma} \frac{e^z}{z} \, dz \right| \leq \max_{\gamma} \left| \frac{e^z}{z} \right| \cdot L(\gamma),
\]
where \(L(\gamma) \) is the length of \(\gamma \). We know from Kindergarten that \(L(\gamma) = \pi \). Now,
\[
\max_{\gamma} \left| \frac{e^z}{z} \right| = \max_{\gamma} \frac{|e^z|}{|z|} = \max_{\gamma} |e^z| = \max_{\gamma} |e^{x+i\beta}| = \max e^{x} = e.
\]
This gives the desired result. \(\square \)

3. Let \(R \) be the region \(\mathbb{C} \setminus \{[0, \infty]\} \). Let \(f(z) = \sqrt{z} \), considered as a holomorphic function on \(R \), and such that \(f(-1) = i \).

(a) Let \(\epsilon \) be a small real number, and let \(\gamma_\epsilon \) be the path along the unit circle given explicitly by \(e^{it} \) for \(t \in [\epsilon, 2\pi - \epsilon] \). Compute the integral
\[
I_\epsilon = \int_{\gamma_\epsilon} \sqrt{z} \, dz.
\]

Solution.
\[
I_\epsilon = \int_{\epsilon}^{2\pi-\epsilon} e^{it/2} \cdot ie^{it} \, dt = i \int_{\epsilon}^{2\pi-\epsilon} e^{3it/2} \, dt
\]
\[
= (2/3) e^{3it/2} \bigg|_{\epsilon}^{2\pi-\epsilon} = (2/3) (e^{3\pi i - 3\epsilon i/2} - e^{3\epsilon i/2})
\]
\[
= (2/3) (-e^{-3\epsilon i/2} - e^{3\epsilon i/2}) = -\frac{4}{3} \cos \left(\frac{3\epsilon}{2} \right).
\]
\(\square \)

(b) Let \(I \) be the limit of the integral as \(\epsilon \) approaches 0. Compute \(I \), and explain why the fact that \(I \neq 0 \) does not contradict Cauchy’s theorem.

Solution.
\[
I = \lim_{\epsilon \to 0} I_\epsilon = \lim_{\epsilon \to 0} -\frac{4}{3} \cos \left(\frac{3\epsilon}{2} \right) = -\frac{4}{3}.
\]
The fact that \(I \neq 0 \) does not contradict Cauchy’s theorem because \(f \) is multivalued (and hence not analytic) on any simple curve that encloses the origin. Another way to say this is the branch cut we introduced to make \(f \) analytic makes the path for \(I \) not closed, so that Cauchy’s theorem does not apply. \(\square \)
(c) Compute the real integral

\[J = \int_0^1 \sqrt{x} \, dx. \]

Proof. A Math 1a no-brainer:

\[\int_0^1 \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \Big|_0^1 = \frac{2}{3}. \]

(d) Prove directly without computing \(I \) or \(J \) that \(I + 2J = 0 \).

\[\begin{tikzpicture}
\draw (0,0) circle (2cm);
\draw[->] (0,0) -- (3,0);
\draw[->] (0,0) -- (0,3);
\node at (0,0) {O};
\node at (3,0) {A};
\node at (0,3) {B};
\node at (2,2) {γ_1};
\node at (1,1) {γ_2};
\node at (-1,1) {γ_3};
\end{tikzpicture} \]

Solution. Let \(A = e^{ie} \) and \(B = e^{i(2\pi - e)} \) in the figure above. Since \(\sqrt{0} = 0 \) the function \(f \) is analytic in the region area enclosed by \(\gamma_1 + \gamma_2 + \gamma_3 \). By Cauchy’s integral formula,

\[\int_{\gamma_1 + \gamma_2 + \gamma_3} \sqrt{z} \, dz = 0 \]

However,

\[\lim_{\epsilon \to 0} \int_{\gamma_1 + \gamma_2 + \gamma_3} = \lim_{\epsilon \to 0} \left(\int_{\gamma_2} + \int_{\gamma_3} + \int_{\gamma_1} \right) = \lim_{\epsilon \to 0} \int_{\gamma_1} + \lim_{\epsilon \to 0} \int_{\gamma_2} + \lim_{\epsilon \to 0} \int_{\gamma_3}. \]

Now note that \(\lim_{\epsilon \to 0} \int_{\gamma_1} = I \) and \(\lim_{\epsilon \to 0} \int_{\gamma_2} = J \). It remains to see what \(\lim_{\epsilon \to 0} \int_{\gamma_3} \) evaluates to. Since \(\gamma_3 \) has opposite orientation from \(\gamma_2 \) this integral gains a minus sign with respect to \(J \). However, as \(\epsilon \to 0 \) the values of \(\sqrt{z} \) approach the negative real values of the real square root function. So we pick up a second minus sign. We conclude \(\lim_{\epsilon \to 0} \int_{\gamma_3} = J \). Hence \(I + 2J = 0. \)
4. If R is a simply connected region with boundary C, prove that

$$A = \frac{1}{2i} \oint_C \overline{z} \, dz,$$

where A is the area of R.

Solution. We apply Green’s theorem. Write $\overline{z} = x - iy$, $dz = dx + idy$. All partial derivatives being continuous, we compute

$$\oint_C \overline{z} \, dz = \oint_C x \, dx + y \, dy + i \oint_C -y \, dx + x \, dy$$

$$= \iint_R (0 - 0) \, dA + i \iint_R (1 - (-1)) \, dA$$

$$= 2iA,$$

from which the desired equality follows immediately. \qed